studijní program

Power Systems and Power Electronics

Fakulta: FEKTZkratka: DPA-SEEAk. rok: 2022/2023

Typ studijního programu: doktorský

Kód studijního programu: P0713D060006

Udělovaný akademický titul: Ph.D.

Jazyk výuky: angličtina

Poplatek za studium: 2500 EUR/ročně pro studenty z EU, 2500 EUR/ročně pro studenty mimo EU

Akreditace: 28.5.2019 - 27.5.2029

Forma studia

Prezenční studium

Standardní doba studia

4 roky

Garant programu

Oborová rada

Oblasti vzdělávání

Oblast Téma Podíl [%]
Elektrotechnika Bez tematického okruhu 60
Energetika Bez tematického okruhu 40

Cíle studia

Studijní program doktorského studia je zaměřen na přípravu špičkových vědeckých a výzkumných specialistů v nejrůznějších oblastech výkonové elektrotechniky, řídicí techniky, návrhu elektrických strojů, výroby a rozvodu elektrické energie, a užití elektrické energie.
Cílem je poskytnout ve všech těchto dílčích zaměřeních doktorské vzdělání absolventům vysokoškolského magisterského studia, prohloubit jejich teoretické znalosti, dát jím též potřebné speciální vědomosti i praktické dovednosti a naučit je metodám vědecké práce.

Profil absolventa

Cílem postgraduálního doktorského studia programu "Power Systems and Power Electronics" je výchova k vědecké práci v oboru silnoproudé elektrotechniky a elektroenergetiky. Absolventi se uplatní jednak ve výzkumu a vývoji, včetně průmyslového vývoje, jednak jako vědecko-pedagogičtí pracovníci na vysokých školách a rovněž ve vyšších manažerských funkcích.

Charakteristika profesí

Absolvent doktorského studijního programu "Power Systems and Power Electronics" získá hluboké teoretické znalosti, osvojí si základy vědecké práce a naučí se samostatně řešit složité problémy z oblasti vědy a techniky, s využitím celosvětových informačních zdrojů v daném oboru.
Absolvent je připraven k dalšímu vědeckému a odbornému růstu s vysokou mírou adaptibility a najde široké společenské uplatnění jednak v oblasti vědy a výzkumu, včetně výzkumu a vývoje v průmyslových společnostech, a to i jako perspektivní pracovník pro vyšší manažerské funkce, jednak i jako vědecko-pedagogický pracovník na technických univerzitách.

Podmínky splnění

Studium doktoranda probíhá podle individuálního studijního plánu, který zpracuje v úvodu studia školitel doktoranda ve spolupráci s doktorandem. V individuálním studijním plánu jsou specifikovány všechny povinnosti stanovené v souladu se Studijním a zkušebním řádem VUT, které musí doktorand k úspěšnému ukončení studia splnit. Tyto povinnosti jsou časově rozvrženy do celého období studia, jsou bodově ohodnoceny a v pevně daných termínech probíhá kontrola jejich plnění.
Student si zapíše a vykoná zkoušku z povinného kurzu Zkouška z angličtiny před státní doktorskou zkouškou, z povinně volitelných předmětů ohledem na zaměření jeho disertační práce, přičemž alespoň dva jsou voleny z: Matematické modelování v elektroenergetice, Vybrané problémy z výroby elektrické energie, Vybrané statě z výkonové elektroniky a elektrických pohonů, Vybrané statě z elektrických strojů a přístrojů, a dále minimálně dvou volitelných předmětů (Angličtiny pro doktorandy; Citování ve vědecké praxi; Řešení inovačních zadání; Vědecké publikování od A do Z).
Ke státní doktorské zkoušce se může student přihlásit až po vykonání všech zkoušek předepsaných jeho individuálním studijním plánem. Před státní doktorskou zkouškou student vypracuje pojednání k disertační práci, v němž detailně popíše cíle práce, důkladné zhodnocení stavu poznání v oblasti řešené disertace, případně charakteristiku metod, které hodlá při řešení uplatňovat.
Obhajoba pojednání, které je oponováno, je součástí státní doktorské zkoušky. V další části zkoušky musí student prokázat hluboké teoretické i praktické znalosti v oblasti elektrotechniky, elektroniky, elektrických strojů a elektrických přístrojů. Státní doktorská zkouška probíhá ústní formou a kromě diskuze nad pojednáním k disertačním práce se také skládá z tematických okruhů týkajících se povinných a povinně volitelných předmětů.
K obhajobě disertační práce se student hlásí po vykonání státní doktorské zkoušky a po splnění podmínek pro ukončení, jakými jsou účast na výuce, vědecká a odborná činnost (tvůrčí činnost), a minimálně měsíční studijní nebo pracovní stáž na zahraniční instituci anebo účasti na mezinárodním tvůrčím projektu.

Vytváření studijních plánů

Studium doktoranda probíhá podle individuálního studijního plánu (dále jen ISP), který zpracuje v úvodu studia školitel doktoranda ve spolupráci s doktorandem. Individuální studijní plán je pro doktoranda závazný. Jsou v něm specifikovány všechny povinnosti stanovené v souladu se Studijním a zkušebním řádem VUT, které musí doktorand k úspěšnému ukončení studia splnit. Tyto povinnosti jsou časově rozvrženy do celého období studia, jsou bodově ohodnoceny a v pevně daných termínech probíhá kontrola jejich plnění. Průběžné bodové hodnocení všech aktivit doktoranda je vedeno v dokumentu „Celkové bodové hodnocení doktoranda“ a je součástí ISP. Při zahájení dalšího roku studia pak školitel do ISP zaznamená případné změny. Nejpozději do 15. 10. každého roku studia odevzdává doktorand vytištěný a podepsaný ISP na vědeckém oddělení fakulty ke kontrole a založení.
Během prvních čtyř semestrů skládá doktorand zkoušky z povinných, povinně volitelných anebo volitelných předmětů pro splnění bodových limitů ze Studijní oblasti, a současně se intenzivně zabývá vlastním studiem a analýzou poznatků v oboru stanoveném tématem disertační práce a průběžným publikováním takto získaných poznatků a vlastních výsledků. V dalších semestrech se doktorand již více soustřeďuje na výzkum a vývoj, který souvisí s tématem disertační práce, na publikování výsledků své tvůrčí práce a na vlastní zpracování disertační práce.
Do konce druhého roku studia skládá doktorand státní doktorskou zkoušku, kterou prokazuje široký rozhled a hluboké znalosti v oboru, souvisejícím s tématem disertační práce. K této zkoušce se musí přihlásit nejpozději do 30. dubna ve druhém roce svého studia. Státní doktorské zkoušce předchází zkouška z anglického jazyka.
Ve třetím a čtvrtém roce svého studia provádí doktorand potřebnou výzkumnou činnost, publikuje dosažené výsledky a zpracovává svoji disertační práci. Součástí studijních povinností v doktorském studijním programu je absolvování části studia na zahraniční instituci nebo účast na mezinárodním tvůrčím projektu s výsledky publikovanými nebo prezentovanými v zahraničí nebo jiná forma přímé účasti studenta na mezinárodní spolupráci, což je nutné doložit nejpozději při odevzdání disertační práce.
Doktorandi ve čtvrtém roce studia předkládají do konce zimního zkouškového období svému školiteli rozpracovanou disertační práci, který ji ohodnotí. Disertační práci doktorand odevzdává do konce 4. roku studia.
Student prezenční formy doktorského studia je v průběhu studia povinen absolvovat pedagogickou praxi, tj. působit v procesu výuky. Zapojení doktoranda do pedagogické činnosti je součástí jeho vědecké přípravy. Pedagogickou praxí doktorand získává zkušenosti v předávání poznatků a zdokonaluje prezentační dovednosti. Skladbu pedagogických aktivit (cvičení, laboratorní cvičení, vedení projektů apod.) určí doktorandovi vedoucí daného ústavu po dohodě se školitelem. Povinnost pedagogické praxe se nevztahuje na doktorandy-samoplátce a na doktorandy v kombinované formě studia. Zapojení do výuky v rámci pedagogické praxe potvrdí po jejím splnění školitel v IS VUT.

Vypsaná témata doktorského studijního programu

  1. Analýza přetoků jalového výkonu v distribuční síti a návrh souvisejících opatření pro implementaci obnovitelných zdrojů a elektromobility

    - provést rozbor plánovaného rozvoje distribučních sítí (legislativa a strategické dokumenty, the European Green Deal, Fit for 55, technická koncepce sítí, míra penetrace OZE a prvků elektromobility aj.), - provést analýzu současného stavu toků jalového výkonu v distribuční soustavě a přenosové soustavě (napříč jednotlivými napěťovými hladinami distribuční sítě a také na úrovni rozvoden/předávacích míst mezi distribuční a přenosovou sítí) a identifikovat problematické oblasti a vydefinovat technické návaznosti z hlediska přetoků jalového výkonu, - připravit variantní scénáře implementace OZE a prvků elektromobility na úrovni vybrané napěťové hladiny (vč. specifikace dalších technických kritérií/limitů ovlivňujících míru jejich implementace) pro analytické ověření jejich dopadu na přetoky jalového výkonu/identifikaci možného dostupného potenciálu pro řízení toků jalového výkonu, - vytvořit a parametrizovat model části distribuční sítě vč. vhodné implementace definovaných scénářů a provedení jejich komplexní analýzy, - specifikovat technická opatření nutná aplikovat/realizovat na úrovni distribuční sítě pro jednotlivé variantní scénáře implementující OZE a prvky elektromobility, a to jak v kontextu vybraných kvalitativních parametrů, tak i v kontextu právě zhodnocení přetoků jalové energie aj. Předpokládaná spolupráce s PDS a mezinárodní vědecká spolupráce. Součástí doktorského studia je stáž na zahraničním výzkumném pracovišti, například na TU Graz. Informace: ptacekm@vut.cz

    Školitel: Ptáček Michal, Ing., Ph.D.

  2. Chromatický temporální flikr

    Jedním z největších problémů v oblasti kvality elektrické energie jsou rychlé změny napětí, tedy jeho kolísání, způsobující blikání světelných zdrojů, které může následně vést k nežádoucímu vjemu blikání s nepříznivým vlivem na zrakový vjem. Kolísání napětí je způsobeno řadou známých mechanizmů způsobujících u světelných zdrojů kolísání zářivého výkonu ale i změnu spektra. Vjem těchto změn je u člověka dán mimo jiné fyziologií zraku. Práce je zaměřena na analýzu procesu přenosu kolísání napětí na kolísání zářivého výkonu a změnu spektra zdrojů, a dále využití výsledků analýzy pro vývoj a realizaci a verifikaci objektivního měřiče blikání respektujícího vedle jasového i chromatický flikr. Práce tedy zahrnuje teoretickou-analytickou, vývojovou i realizační část. Předpokládaná mezinárodní vědecká spolupráce. Součástí doktorského studia je stáž na zahraničním výzkumném pracovišti (TU Dresden). Informace: drapela@vut.cz.

    Školitel: Drápela Jiří, prof. Ing., Ph.D.

  3. Nabíjecí stanice pro elektromobily jako prvek elektrizační soustavy

    V souvislosti se současným postupným rozvojem hybridních automobilů a elektromobilů (EVs) se stále naléhavěji ukazuje potřeba rozvoje nabíjecích stanic pro tento typ dopravy. Téma je zaměřeno na návrh a energetickou analýzu konceptu nabíjecí stanice s integrovanou akumulací a s podporou obnovitelného zdroje energie. Na základě navržené koncepce budou sestaveny matematické modely jednotlivých částí systému a bude provedena energeticko-ekonomická analýza s cílem ověřit možnost využití takto koncipované sestavy pro snížení zátěže sítě v odběrném místě. Předpokládá se přímá možnost spolupráce na konkrétním řešení s energetickou společností. Součástí doktorského studia bude stáž na zahraničním výzkumném pracovišti.

    Školitel: Mastný Petr, doc. Ing., Ph.D.

  4. Optická diagnostika elektrického oblouku

    Určení teploty elektrického oblouku a koncentrace částic pomocí optické emisní spektroskopie. Sledování vývoje tvaru a polohy vodivého kanálu pomocí vysokorychlostní kamery. Vyhodnocení pronikání konstrukčních materiálů do výbojového prostoru a jejich vliv na vlastnosti elektrického oblouku. V rámci tohoto doktorského studia je předpokládána zahraniční stáž na INP v Greifswaldu. Minimální doba stáže činí jeden měsíc.

    Školitel: Aubrecht Vladimír, prof. RNDr., CSc.

  5. Optimalizace výpočtů přenosu záření v plazmatu

    Výpočet optimálního rozložení středních absorpčních koeficientů pro výpočet záření v plazmatu. Hodnocení vlivu prostorové konfigurace elektrického oblouku a složení plazmatu na hranice frekvenčních intervalů. Porovnání různých algoritmů pro numerickou optimalizaci a jejich aplikace na problém přenosu záření v plazmatu. V rámci doktorského studia je nutné absolvovat zahraniční stáž. Předpokládané místo konání stáže je laboratoř LAPLACE, univerzita v Toulouse.

    Školitel: Aubrecht Vladimír, prof. RNDr., CSc.

  6. Ostrovní provoz sítí s distribuovanými zdroji

    S množstvím zdrojů distribuovaných v distribučních sítích (DS) vzniká nově i možnost přechodu části DS do ostrovního provozu (OP), což může být chápáno mimo jiné i jako cesta ke zvyšování spolehlivosti dodávky ve vymezené části DS. Kromě jistě nesporných benefitů, je to však spojeno s řadou technických výzev, zahrnujících především vymezení oblasti, která bude splňovat podmínky pro úspěšný přechod do OP, správnou a spolehlivou detekci stavu pro přechod do OP a zpět, vymezení strategie řízení zdrojů (spotřebičů) pro zajištění stabilního chodu oblasti s odpovídající kvalitou elektrické energie, atp. Je ale třeba vzít v úvahu i bezprostředně spjatá témata související s bezpečností a legislativním rámcem, který provoz DS upravuje. Práce je zaměřena především na technickou realizovatelnost a tedy vytvoření a ověření komplexního konceptu. Předpokládaná spolupráce s provozovateli DS a mezinárodní vědecká spolupráce. Součástí doktorského studia je stáž na zahraničním výzkumném pracovišti, například na Università degli Studi della Campania "Luigi Vanvitelli". Informace: drapela@feec.vutbr.cz.

    Školitel: Drápela Jiří, prof. Ing., Ph.D.

  7. Regulace napětí v distribučních sítích s vysokým podílem stochastických zdrojů

    Stále rostoucí podíl stochastických zdrojů v sítích má vliv na stabilitu napětí v průběhu dne. V důsledku proměnlivé dodávky výkonu do elektrizační soustavy z těchto zdrojů dochází ke kolísání odchylek napětí v průběhu denního diagramu. Současné prostředky používané k regulaci napětí v některých případech nedokáží zajistit požadovanou úroveň napětí ve všech odběrných místech sítě. Cílem práce je zmapovat nové možnosti a prostředky pro regulaci napětí v distribuční soustavě a navrhnout koncepci této regulace s ohledem na současný vývoj zdrojové základny. Součástí doktorského studia bude stáž na zahraničním výzkumném pracovišti.

    Školitel: Mastný Petr, doc. Ing., Ph.D.

  8. Revize současného a tvorba nového výpočetního nástroje pro návrh zemničů aplikovatelného v národních podmínkách

    V současnosti lze spatřovat tlak elektroenergetického odvětví na zpřesnění výpočtu navrhovaných zemnících soustav, a to především pro případy, kdy se vyskytují ztížené půdní podmínky. Současný postup na národní a částečně i na mezinárodní úrovni je založen na využití koeficientů využití zemničů, který je vhodný pro případy homogenních půd, nicméně je již méně výhodný pro případy půdy nehomogenních. Ze strany průmyslu je cítit tlak pro dosažení uspokojivějších řešení i pro tyto případy, nicméně současné užívané analytické řešení založené na zjednodušených vztazích odvozených metodou zrcadlení je v tomto případě již pro další rozšíření spíše nevhodné. Z principu fungování uvedených koeficientů využití se jeví, že nalezení uspokojivého řešení vede na relativně komplexní závislost, která by pro praktické využití byla spíše obtížně využitelná. Možným uspokojivým řešením by zde mohlo být skrze vytvoření softwarového nástroje, který by využíval novějšího a přesnějšího postupu stanovení rozložení potenciálu v okolí zemniče, tedy např. založená na řešení Laplaceovy rovnice, metodě konečných prvků atp. Lze předpokládat, že využití takto vytvořeného softwarového nástroje by mohlo být zahrnuto do postupu výpočtu zemničů jako případného alternativního způsobu k současnému postupu či být přímo doporučeno českým sdružením elektroenergetických společností v rámci národních podnikových norem elektroenergetiky. Vytvořený výpočtový nástroj by bylo vhodné rozšířit také o možnosti pravděpodobnostního vyhodnocování zemničů, kdy tato metoda je oproti stávající deterministické zatím spíše experimentální, nicméně lze předpokládat zvýšený tlak na její uplatnění, a to alespoň v některých ztížených případech. Postup práce by byl tedy přibližně následující. - Rozbor současně užívaných výpočtových a měřících postupů, požadavků na výpočet ze strany elektroenergetických společností, seznámení se současnými legislativními požadavky na evropské i národní úrovni. - Seznámení se, výběr a rozpracování zvolené metody výpočtu zemničů. Volba vstupních a výstupních parametrů. Okolnosti vhodnosti použitého řešení s navržením případných jejich vylepšení. Volba detailnosti samotného řešení, tj. např. jaké modely půdy zahrnout, zemniče umístěné v betonových základech, jejich řešení atp. - Spolupráce s průmyslem na ověření správnosti získaných výsledků, provedení ověřovacích měření. - Studium a implementace pravděpodobnostního vyhodnocování zemničů.

    Školitel: Vyčítal Václav, Ing., Ph.D.

  9. Využití simulací v reálném čase pro navrhování pokročilých systémů chránění

    Nové technologie pro výzkum chování elektrických sítí při přechodných jevech umožňují pokročilou analýzu působení rozsáhlých systémů chránění při poruchách. Cílem práce je rozšíření možností real-time simulátoru RTDS pro realizaci simultánních testů v reálném čase se začleněním reálných zařízení, tzv. hardware in the loop simulace. Součástí doktorského studia bude stáž na zahraničním výzkumném pracovišti.

    Školitel: Toman Petr, prof. Ing., Ph.D.

  10. Využití tarifních měřidel s rozšířenou funkcí pro řízení a automatizaci distribučních soustav

    Hlavní funkcí elektroměrů je měřit elektrickou energii v definovaném místě elektrické sítě. Kromě toho však mohou elektroměry plnit řadu dalších funkcí. Například mohou být využity pro měření dalších elektrických veličin vypovídajících o stavu elektrické sítě a následně použitelných, v rámci konceptu Smart Grids, pro její řízení. Cílem je definovat potřebné funkce měřidel a jejich začlenění do jednotlivých bezpečnostně-technických vrstev řízení distribučních sítí. Dále optimalizovat měřící funkce a koncentraci dat pro jednotlivé úlohy. Téma je součástí řešení výzkumného úkolu. Předpokládaná spolupráce s provozovateli DS a mezinárodní vědecká spolupráce. Součástí doktorského studia je stáž na zahraničním výzkumném pracovišti, například na TU Dresden, DE. Informace: drapela@feec.vutbr.cz.

    Školitel: Drápela Jiří, prof. Ing., Ph.D.

Struktura předmětů s uvedením ECTS kreditů (studijní plán)

Libovolný ročník, zimní semestr
ZkratkaNázevJ.Kr.Pov.Uk.Hod. rozsahSk.Ot.
DPA-ET1Electrotechnical Materials, Material Systems and Production Processesen4Povinně volitelnýdrzkS - 39ano
DPA-FY1Junctions and Nanostructuresen4Povinně volitelnýdrzkS - 39ano
DPA-EE1Mathematical Modelling of Electrical Power Systemsen, cs4Povinně volitelnýdrzkS - 39ano
DPA-RE1Modern Electronic Circuit Designen4Povinně volitelnýdrzkS - 39ano
DPA-ME1Modern Microelectronic Systemsen4Povinně volitelnýdrzkS - 39ano
DPA-TK1Optimization Methods and Queuing Theoryen4Povinně volitelnýdrzkS - 39ano
DPA-AM1Selected Chaps From Automatic Controlen4Povinně volitelnýdrzkS - 39ano
DPA-VE1Selected Problems From Power Electronics and Electrical Drivesen4Povinně volitelnýdrzkS - 39ano
DPA-TE1Special Measurement Methodsen4Povinně volitelnýdrzkS - 39ano
DPA-MA1Statistics, Stochastic Processes, Operations Researchen4Povinně volitelnýdrzkS - 39ano
DPX-JA6Angličtina pro doktorandyen4VolitelnýdrzkCj - 26ano
XPA-CJ1Czech language en6VolitelnýzkCOZ - 52ano
DPA-EIZScientific Publishing A to Zen2VolitelnýdrzkS - 26ano
DPA-RIZSolving of Innovative Tasksen2VolitelnýdrzkS - 39ano
Libovolný ročník, letní semestr
ZkratkaNázevJ.Kr.Pov.Uk.Hod. rozsahSk.Ot.
DPA-TK2Applied Cryptographyen4Povinně volitelnýdrzkS - 39ne
DPA-MA2Discrete Processes in Electrical Engineeringen4Povinně volitelnýdrzkS - 39ano
DPA-ME2Microelectronic Technologiesen4Povinně volitelnýdrzkS - 39ano
DPA-RE2Modern Digital Wireless Communicationen4Povinně volitelnýdrzkS - 39ano
DPA-EE2New Trends and Technologies in Power System Generationen4Povinně volitelnýdrzkS - 39ano
DPA-TE2Numerical Computations with Partial Differential Equationsen4Povinně volitelnýdrzkS - 39ano
DPA-ET2Selected Diagnostic Methods, Reliability and Qualityen4Povinně volitelnýdrzkS - 39ano
DPA-AM2Selected Chaps From Measuring Techniquesen4Povinně volitelnýdrzkS - 39ano
DPA-FY2Spectroscopic Methods for Non-Destructive Diagnosticsen4Povinně volitelnýdrzkS - 39ano
DPA-VE2Topical Issues of Electrical Machines and Apparatusen4Povinně volitelnýdrzkS - 39ano
DPX-JA6Angličtina pro doktorandyen4VolitelnýdrzkCj - 26ano
XPA-CJ1Czech language en6VolitelnýzkCOZ - 52ano
DPA-CVPQuotations in a Research Worken2VolitelnýdrzkS - 26ano
DPA-RIZSolving of Innovative Tasksen2VolitelnýdrzkS - 39ano
Libovolný ročník, celoroční semestr
ZkratkaNázevJ.Kr.Pov.Uk.Hod. rozsahSk.Ot.
DPX-QJAZkouška z angličtiny před státní doktorskou zkouškuen4VolitelnýdrzkK - 3ano