studijní program

Teleinformatika

Fakulta: FEKTZkratka: DKC-TLIAk. rok: 2022/2023

Typ studijního programu: doktorský

Kód studijního programu: P0714D060011

Udělovaný titul: Ph.D.

Jazyk výuky: čeština

Akreditace: 28.5.2019 - 27.5.2029

Forma studia

Kombinované studium

Standardní doba studia

4 roky

Garant programu

Oborová rada

Oblasti vzdělávání

Oblast Téma Podíl [%]
Elektrotechnika Bez tematického okruhu 100

Cíle studia

Doktorand se naučí tvůrčím způsobem využívat teoretické znalosti získané jak studiem vybraných kurzů, tak vlastní tvůrčí činností. Tyto poznatky je schopni efektivně využití při následném návrhu vlastních a inovátorských řešení v rámci dalšího experimentálního vývoje a aplikačního výzkumu. Důraz je tak kladen na získání jak teoretických, tak i praktických dovedností, dále samostatnost v rozhodování, formulování vědecko-výzkumných hypotéz pro přípravu projektů základního až aplikovaného výzkumu, schopnost hodnocení výsledků a jejich prezentace ve formě vědeckých textů a prezentací před vědeckou komunitou.

Profil absolventa

Doktorský studijní program "Teleinformatika" je zaměřen na přípravu špičkových vědeckých a výzkumných specialistů, kteří budou mít hluboké znalosti principů a technik využívaných v komunikačních a datových drátových i bezdrátových sítích a s tím souvisejících oblastí jako je i vlastní sběr, zpracování a zpětná reprezentace užitečných uživatelských dat na úrovni aplikační vrstvy. Hlavní části studia tvoří oblasti teoretické informatiky a komunikační techniky. Absolvent má široké znalosti komunikačních a informačních technologií, datových přenosů a jejich zabezpečení. Absolvent se orientuje v operačních systémech, počítačových jazycích a databázových systémech, jejich užití včetně návrhu vhodného software a uživatelských aplikací. Je schopen navrhovat nová technologická řešení komunikačních zařízení a informačních systémů určených pro pokročilý přenos informací.

Charakteristika profesí

Absolventi programu "Teleinformatika" se uplatňují zejména ve výzkumných, vývojových a projekčních týmech, v oblasti odborné činnosti ve výrobních nebo obchodních organizacích, v akademické sféře a v dalších institucích zabývajících se vědou, výzkumem, vývojem a inovacemi, ve všech oblastech společnosti, kde dochází k aplikaci a využití komunikačních systémů a přenosu informace datovými sítěmi.
Uplatnění naši absolventi nalézají zejména při analýze, návrhu, tvorbě nebo správě komplexních systémů pro přenos a zpracování dat, a také při programování, integraci, podpoře, údržbě nebo prodeji těchto systémů.

Podmínky splnění

Studium doktoranda probíhá podle individuálního studijního plánu, který zpracuje v úvodu studia školitel doktoranda ve spolupráci s doktorandem. V individuálním studijním plánu jsou specifikovány všechny povinnosti stanovené v souladu se Studijním a zkušebním řádem VUT, které musí doktorand k úspěšnému ukončení studia splnit. Tyto povinnosti jsou časově rozvrženy do celého období studia, jsou bodově ohodnoceny a v pevně daných termínech probíhá kontrola jejich plnění. Student si zapíše a vykoná zkoušky z povinných předmětů, minimálně dvou povinně volitelných předmětů ohledem na zaměření jeho disertační práce, a dále minimálně dvou volitelných předmětů (Angličtina pro doktorandy, Řešení inovačních zadání, Vědecké publikování od A do Z).
Ke státní doktorské zkoušce se může student přihlásit až po vykonání všech zkoušek předepsaných jeho individuálním studijním plánem. Před státní doktorskou zkouškou student vypracuje pojednání k disertační práci, v němž detailně popíše cíle práce, důkladné zhodnocení stavu poznání v oblasti řešené disertace, charakteristiku metod, které hodlá při řešení uplatňovat. Obhajoba pojednání, které je oponováno, je součástí státní doktorské zkoušky. V další části zkoušky musí student prokázat hluboké teoretické i praktické znalosti v oblasti mikroelektroniky, elektrotechnologie, fyziky materiálů, nanotechnologií, elektrotechniky, elektroniky, teorie obvodů. Státní doktorská zkouška probíhá ústní formou a kromě diskuze nad pojednáním k disertační práci se také skládá z tematických okruhů týkajících se povinných a povinně volitelných předmětů.
K obhajobě disertační práce se student hlásí po vykonání státní doktorské zkoušky a po splnění podmínek pro ukončení, jakými jsou účast na výuce, vědecká a odborná činnost (tvůrčí činnost), a minimálně měsíční studijní nebo pracovní stáž na zahraniční instituci anebo účasti na mezinárodním tvůrčím projektu.

Vytváření studijních plánů

Studium doktoranda probíhá podle individuálního studijního plánu (dále jen ISP), který zpracuje v úvodu studia školitel doktoranda ve spolupráci s doktorandem. Individuální studijní plán je pro doktoranda závazný. Jsou v něm specifikovány všechny povinnosti stanovené v souladu se Studijním a zkušebním řádem VUT, které musí doktorand k úspěšnému ukončení studia splnit. Tyto povinnosti jsou časově rozvrženy do celého období studia, jsou bodově ohodnoceny a v pevně daných termínech probíhá kontrola jejich plnění. Průběžné bodové hodnocení všech aktivit doktoranda je vedeno v dokumentu „Celkové bodové hodnocení doktoranda“ a je součástí ISP. Při zahájení dalšího roku studia pak školitel do ISP zaznamená případné změny. Nejpozději do 15. 10. každého roku studia odevzdává doktorand vytištěný a podepsaný ISP na vědeckém oddělení fakulty ke kontrole a založení.
Během prvních čtyř semestrů skládá doktorand zkoušky z povinných, povinně volitelných anebo volitelných předmětů pro splnění bodových limitů ze Studijní oblasti, a současně se intenzivně zabývá vlastním studiem a analýzou poznatků v oboru stanoveném tématem disertační práce a průběžným publikováním takto získaných poznatků a vlastních výsledků. V dalších semestrech se doktorand již více soustřeďuje na výzkum a vývoj, který souvisí s tématem disertační práce, na publikování výsledků své tvůrčí práce a na vlastní zpracování disertační práce.
Do konce druhého roku studia skládá doktorand státní doktorskou zkoušku, kterou prokazuje široký rozhled a hluboké znalosti v oboru, souvisejícím s tématem disertační práce. K této zkoušce se musí přihlásit nejpozději do 30. dubna ve druhém roce svého studia. Státní doktorské zkoušce předchází zkouška z anglického jazyka.
Ve třetím a čtvrtém roce svého studia provádí doktorand potřebnou výzkumnou činnost, publikuje dosažené výsledky a zpracovává svoji disertační práci. Součástí studijních povinností v doktorském studijním programu je absolvování části studia na zahraniční instituci nebo účast na mezinárodním tvůrčím projektu s výsledky publikovanými nebo prezentovanými v zahraničí nebo jiná forma přímé účasti studenta na mezinárodní spolupráci, což je nutné doložit nejpozději při odevzdání disertační práce.
Doktorandi ve čtvrtém roce studia předkládají do konce zimního zkouškového období svému školiteli rozpracovanou disertační práci, který ji ohodnotí. Disertační práci doktorand odevzdává do konce 4. roku studia.
Student prezenční formy doktorského studia je v průběhu studia povinen absolvovat pedagogickou praxi, tj. působit v procesu výuky. Zapojení doktoranda do pedagogické činnosti je součástí jeho vědecké přípravy. Pedagogickou praxí doktorand získává zkušenosti v předávání poznatků a zdokonaluje prezentační dovednosti. Skladbu pedagogických aktivit (cvičení, laboratorní cvičení, vedení projektů apod.) určí doktorandovi vedoucí daného ústavu po dohodě se školitelem. Povinnost pedagogické praxe se nevztahuje na doktorandy-samoplátce a na doktorandy v kombinované formě studia. Zapojení do výuky v rámci pedagogické praxe potvrdí po jejím splnění školitel v IS VUT.

Vypsaná témata doktorského studijního programu

  1. Analogové obvody obsahující prvky neceločíselného řádu

    Práce je zaměřena na modelování, simulace a experimentální ověřování struktur, u nichž relace mezi odezvou a budicí veličinou obsahuje derivaci nebo integrál necelistvého řádu (tzv. fraktální struktury či obvody). Úkolem je dále návrh vhodných aplikačních možností obvodů fraktálního řádu, např. kmitočtových filtrů, rekonfigurovatelných filtrů, přeladitelných oscilátorů či dalších obvodů. Pozornost je třeba věnovat i dalším možným způsobům realizace fraktálních obvodů, např. využití struktur s rozprostřenými parametry (RC-EDP), počítačovému modelování přírodních a biologických látek a struktur a také matematickému popisu.

    Školitel: Jeřábek Jan, doc. Ing., Ph.D.

  2. Automatická hudební transkripce nahrávek na symbolický zápis

    Automatická hudební transkripce (AMT) je odvětví vědního oboru Music Information Retrieval (MIR), které kombinuje vytváření logických hudebních struktur, hudební analýzu a rozpoznávání hudebních objektů. AMT se soustředí na vývoj algoritmů, které mění reprezentaci hudebního signálu (ve formě digitálních nahrávek) na určitou formu symbolického zápisu a obsahuje množinu dalších specifických parametrů, jako například určení výšky tónů polyfonické struktury, začátků a konců tónů, rozeznání instrumentů, detekce rytmu a dob apod. Cílem disertační práce je návrh a implementace systému automatické hudební transkripce na symbolický zápis.

    Školitel: Smékal Zdeněk, prof. Ing., CSc.

  3. Efektivní využití IP sítí v krizových situacích

    Cílem je vytvořit efektivní strategii použití veřejných a neveřejných IP síti pro krizové řízení. Dále pak navrhnout takovou síť, která by dokázala kapacitně, ale také z hlediska odolnosti, zajistit krizovou komunikaci. Jednalo by se zejména o přenosy hlasu, dat, TV vysílání. Další částí by bylo navrhnout nové metody řízení komunikace po internetu - řídit toky informací atp. Výzkum by obsahoval také vliv topologie sítě na její stabilitu a bezpečnost, rychlost šíření virů, schopnost odolávat útokům atp. Jedním z cílů je navrhnout softwarového robota, který bude schopný monitorovat topologii sítě popřípadě internetu, dalším cílem je navrhnout systém pro výměnu souborů po internetu, ale bez jakéhokoli centrálního prvku. Systém by přitom měl být intuitivně použitelný. Řešení by mělo být bezpečné a umožnit anonymizovat odesilatele a příjemce dat. Finálním cílem je navrhnout vysoce odolnou síť vhodnou pro krizové situace a tento návrh podložit teorií.

    Školitel: Škorpil Vladislav, doc. Ing., CSc.

  4. Metody pro měření základních i odvozených parametrů datových sítí

    Cílem této práce je výzkum v oblasti měření základních parametrů datových sítí založených především na Internet protokolu (IP), jako jsou propustnost vyhodnocovaná na různých ISO/OSI modelu, jednosměrné a obousměrné zpoždění a také v oblasti složených parametrů, jako jsou např. kvalita hlasových a video služeb. To souvisí s problematikou modelování chování sítí a uživatelů v různých situacích, dlouhodobými i krátkodobými jevy, popisem systémů hromadné obsluhy, a také vlastnostmi a chováním stěžejních internetových a měřících protokolů v počítačových sítích, stejně tak jako problematikou jejich možného nastavení a bezpečnosti. Na základě analýzy dostupných nástrojů a jejich vlastností, popř. vývoje nástrojů vlastních, je očekáván návrh řešení a přístupů pro lišících se podle typu měření. Cílem je následně navržené postupy ověřit v laboratorních podmínkách i v prostředí reálných sítí.

    Školitel: Jeřábek Jan, doc. Ing., Ph.D.

  5. Návrh moderních IP sofistikovaných telematických systémů v dopravě

    Telematické systémy jsou obvyklé zejména v dopravě. Výzkum telematických systémů založených na Internet protokolu bude směřovat k návrhu sofistikovaných, tedy promyšlených, formálně propracovaných a složitých metod využívajících IP systémů v různých oblastech. Předpokládají se zejména sledovací systémy, zabezpečovací systémy, systémy placení jízdného a dalších poplatků, informační systémy, interaktivní aplikace apod. Pozornost se zaměřuje na lokalizaci pomocí GPS, diagnostiku vozidel, sledování vozidel v orthomapách v reálné situaci apod. Sofistikované telematické systémy budou softwarově simulovány, optimalizovány a následně prakticky realizovány ve formě funkčních vzorků. Předpokládá se komunikace dvou automobilů bez účasti řidiče, předcházení kolizím, předávání informací o dopravě z míst, odkud automobily vyjížděly. Uvažován bude velmi přesný navigační systém založený na systému Galileo (GNSS) pro ovládání funkčních bloků automobilů (řízení).

    Školitel: Škorpil Vladislav, doc. Ing., CSc.

  6. Paralelizace genetických algoritmů

    Cílem práce je výzkum v oblasti paralelizace genetických algoritmů. Paralelizace je nedílnou součástí snahy o zvýšení efektivity genetických algoritmů a jejich možného využití. Výzkum by měl navázat na současné poznatky a provést výzkum vlivu zvolených parametrů a designu na výkon. Dle zvoleného postupu je nutná znalost některého z programovacích jazyků, dále skriptovacího jazyka Python či Matlab. Zvolené vývojové a testovací prostředí je ponecháno volné volbě. Výsledkem by měla být prezentace a ověření dosažených výsledků.

    Školitel: Škorpil Vladislav, doc. Ing., CSc.

  7. Separace hudebního zdroje pomocí metod strojového učení a umělých neuronových sítí

    Číslicové zpracování hudebních signálů a obor Music Information Retrieval (MIR) je velmi rychle rozvíjející se multidisciplinární odvětví. Separace hudebního zdroje patří k nedořešeným a žádaným tématům - nejslibnější výsledky zatím vykazují techniky založené na strojovém učení a především na umělých neuronových sítích. Jedná se o systém, který v ideálním případě z finální smíchané hudební nahrávky dokáže separovat jednotlivé instrumenty a vytvořit tak záznamy, které byly před mixáží oddělené. Tím lze vytvořit dekompozici hudebního díla na původní elementy. Cílem disertační práce je návrh efektivního systému pro automatickou separaci hudebního zdroje.

    Školitel: Smékal Zdeněk, prof. Ing., CSc.

  8. Využití strojového učení při modelování zvukových systémů

    Neuronové sítě a strojové učení jsou v oblasti zpracování zvukových signálů v současné době využívány při dolování dat, např. rozpoznání žánru, získávání hudebních informací z nahrávek apod., a při zpracování řeči, např. rozpoznávání slov, identifikaci mluvčího, rozpoznání emocí apod. Jejich potencionální využití je ale také v modelování zvukových systémů. Cílem disertační práce je nalezení algoritmů optimalizace parametrů digitálních hudebních efektů, algoritmů simulujících akustiku prostorů a dalších s využitím strojového učení a modelů slyšení pro trénování neuronových sítí. Výzkum bude zaměřen jednak na statickou optimalizaci parametrů systému podle analogové předlohy a jednak na dynamickou změnu parametrů v reálném čase na základě vlastností zpracovávaného zvukového signálu. Výzkum bude probíhat ve spolupráci s firmami zabývajícími se vývojem SW pro zpracování zvukových signálů.

    Školitel: Schimmel Jiří, doc. Ing., Ph.D.

  9. Vývoj algoritmů pro správu front a řízení přepínání v aktivních síťových prvcích

    Aktivní síťové prvky dnes používají pro správu front a řízení přepínání řadu výkonných algoritmů. Úkolem je implementovat vybrané algoritmy správy front do vývojového systému vybaveného FPGA kartou, proměřit jejich výkonnost a vyvinout vlastní algoritmus řešící na vývojovém systému správu front při respektování standardního značkování používaného při řešení QoS. K řešení bude třeba znalost jazyků C a VHDL, Matlab, popř. Verilog. Navržena bude architektura síťového prvku s prioritním směrováním. Navržen bude také originální postup, jak danou problematiku modelovat matematicky a dále jak tento matematický model implementovat . Softwarová simulace systému, který lze využít pro řízení spojovacího pole určeného pro přepojování datových jednotek, bude rozšířena o realizaci hardwarové implementace, např. pomocí programovatelných logických polí vývojového systému FPGA. Získané poznatky budou zobecněny a vztaženy k teorii vysokorychlostních síťových prvků.

    Školitel: Škorpil Vladislav, doc. Ing., CSc.

  10. Zpracování prostorového zvukového signálu pomocí mikrofonních polí malých rozměrů

    Mikrofonní pole malých rozměrů, osazená zejména MEMS mikrofony, se v současné době používají v řadě aplikací, např. hlasových asistentech, robotech nebo při monitoringu v senzorových sítích, zejména pro svoji schopnost prostorové filtrace zvukového signálu od hluku pozadí, ale mají potenciál i při využití v multimediálních aplikacích včetně rozšířené a virtuální reality. Problémem je ovšem limitace jejich rozměrů s ohledem na schopnost prostorové filtrace na nízkých vzorkovacích kmitočtech. Cílem disertační práce je využití nových metod prostorové filtrace zvukového signálu snímaného polem mikrofonů za účelem dalšího zmenšení rozměrů polí a zvýšení rozlišení a přesnosti filtrace. Práce bude zaměřena nejen na výzkum vhodných algoritmů zpracování signálů pole, ale také na jeho mechanickou konstrukci umožňující úpravu akustických vlastností mikrofonů, zejména tvarování směrových charakteristik. Výzkum bude probíhat ve spolupráci s Fakultou dopravní ČVUT a Université du Maine Le Mans.

    Školitel: Schimmel Jiří, doc. Ing., Ph.D.

1. kolo (podání přihlášek od 01.04.2022 do 15.05.2022)

  1. Bezpečnost v konvergovaných sítích

    Cílem je analyzovat nejnovější vývoj a trendy v oblasti konvergovaných sítí, zejména problémy ochrany proti kybernetickým útokům. Na podkladě získaných poznatků se předpokládá návrh inovovaných metod obrany a ochrany, nebo metody nové. Výzkum vyžaduje přehled v oblasti sítí, zkušenosti s prací s programy MATLAB nebo SCILAB, využívat se bude pravděpodobně alespoň jeden z jazyků VHDL, C, Java, evoluční algoritmy, v případě zájmu vývojový systém FPGA.

    Školitel: Škorpil Vladislav, doc. Ing., CSc.

  2. Časově-prostorová analýza a syntéza zvukového pole

    Metoda časově-prostorové analýzy ukazuje kumulativní vývoj zvukového pole jako funkci směru intenzity zvuku formou prostorové impulsní odezvy. Aplikacemi této metody je např. analýza akustiky poslechových prostorů, odhad směru přicházejícího zvuku a další. Časově-prostorová syntéza naopak umožňuje percepčně založenou reprodukci 3D zvukového pole pro filmovou a mutimediální produkci, virtuální a rozšířenou realitu nebo 360-stupňová videa. Cílem disertační práce výzkum a vývoj metod snímání zvukového pole pomocí mikrofonních polí a jejich následné syntézy pro specifické reprodukční systémy.

    Školitel: Schimmel Jiří, doc. Ing., Ph.D.

  3. Časově-prostorová analýza a syntéza zvukového pole

    Metoda časově-prostorové analýzy ukazuje kumulativní vývoj zvukového pole jako funkci směru intenzity zvuku formou prostorové impulsní odezvy. Aplikacemi této metody je např. analýza akustiky poslechových prostorů, odhad směru přicházejícího zvuku a další. Časově-prostorová syntéza naopak umožňuje percepčně založenou reprodukci 3D zvukového pole pro filmovou a mutimediální produkci, virtuální a rozšířenou realitu nebo 360-stupňová videa. Cílem disertační práce výzkum a vývoj metod snímání zvukového pole pomocí mikrofonních polí a jejich následné syntézy pro specifické reprodukční systémy.

    Školitel: Schimmel Jiří, doc. Ing., Ph.D.

  4. Elektronicky konfigurovatelné analogové obvody

    Téma je zaměřeno na návrh dvojbranů, zejména pak filtračních obvodů či např. oscilátorů s možností externí elektronické změny významných parametrů obvodu či v případě filtru i typu kmitočtové odezvy. Předpokládá se i návrh struktur s prvky neceločíselného řádu. Pro tyto účely budou využity především již existující aktivní prvky, popř. budou navrženy jejich modifikované varianty. Předkládají se simulace nejen s jednoduchými modely, ale i s modely na tranzistorové úrovni. Při experimentálním ověřování budou práce zaměřeny především na behaviorální modelování.

    Školitel: Jeřábek Jan, doc. Ing., Ph.D.

  5. Klinicky interpretovatelné strojové učení v oblasti prediktivní analýzy neurodegenerativních a neurovývojových onemocnění

    Se stárnutím populace narůstá potřeba pro počítačovou analýzu dat pacientů trpících neurodegenerativními nebo neurovývojovými onemocněními za účelem objektivní diagnostiky a odhadu progrese, léčby, ale také prevence těchto onemocnění. Cílem této dizertační práce je výzkum a vývoj multimodálních a klinicky interpretovatelných metod strojového učení v oblasti kvantitativní analýzy neurodegenerativních a neurovývojových onemocnění s využitím motorických i nemotorických digitálních biomarkerů. Ve spolupráci s neurology z Fakultní nemocnice u sv. Anny v Brně a Středoevropského technologického institutu Masarykovy univerzity budou vytvořené metody integrovány do systémů založených na technologiích Health 4.0.

    Školitel: Galáž Zoltán, Ing., Ph.D.

  6. Učení se z jedné třídy pro potřeby hledání anomálií v obraze komplexních tvarů

    Klasifikace z jedné třídy zahrnuje techniky strojového učení se modelu s použitím „normálním“ dat (či značně nevyvážených dat) a předpovídání, zda jsou nová data normální či vykazují anomálii oproti trénovacím datům. Tato technika má vysoký potenciál pro uplatnění v mnoha vědních odvětví, zejména v oblasti vizuální kontroly kvality a výrobků. Cílem disertační práce je návrh a implementace inovativních technik založených na strojovém učení, které budou sloužit pro automatickou detekci poruch komplexních tvarů.

    Školitel: Burget Radim, doc. Ing., Ph.D.

Struktura předmětů s uvedením ECTS kreditů (studijní plán)

Libovolný ročník, zimní semestr
ZkratkaNázevJ.Kr.Pov.Uk.Hod. rozsahSk.Ot.
DKC-ET1Elektrotechnické materiály, materiálové soustavy a výrobní procesycs4Povinně volitelnýdrzkK - 39ano
DKC-EE1Matematické modelování v elektroenergeticecs4Povinně volitelnýdrzkK - 39ano
DKC-ME1Moderní mikroelektronické systémycs4Povinně volitelnýdrzkK - 39ano
DKC-RE1Návrh moderních elektronických obvodůcs4Povinně volitelnýdrzkS - 39ano
DKC-TK1Optimalizační metody a teorie hromadné obsluhycs4Povinně volitelnýdrzkK - 39ano
DKC-FY1Rozhraní a nanostrukturycs4Povinně volitelnýdrzkK - 39ano
DKC-TE1Speciální měřicí metodycs4Povinně volitelnýdrzkK - 39ano
DKC-MA1Statistika. stochastické procesy, operační výzkumcs4Povinně volitelnýdrzkK - 39ano
DKC-AM1Vybrané kapitoly řídicí technikycs4Povinně volitelnýdrzkK - 39ano
DKC-VE1Vybrané statě z výkonové elektroniky a elektrických pohonůcs4Povinně volitelnýdrzkK - 39ano
DKX-JA6Angličtina pro doktorandyen4VolitelnýdrzkCj - 26ano
DKC-RIZŘešení inovačních zadánícs2VolitelnýdrzkK - 39ano
DKC-EIZVědecké publikování od A do Zcs2VolitelnýdrzkK - 26ano
Libovolný ročník, letní semestr
ZkratkaNázevJ.Kr.Pov.Uk.Hod. rozsahSk.Ot.
DKC-TK2Aplikovaná kryptografiecs4Povinně volitelnýdrzkK - 39ano
DKC-MA2Diskrétní procesy v elektrotechnicecs4Povinně volitelnýdrzkK - 39ano
DKC-ME2Mikroelektronické technologiecs4Povinně volitelnýdrzkK - 39ano
DKC-RE2Moderní digitální bezdrátová komunikacecs4Povinně volitelnýdrzkK - 39ano
DKC-EE2Nové trendy a technologie výroby energiecs4Povinně volitelnýdrzkK - 39ano
DKC-TE2Numerické úlohy s parciálními diferenciálními rovnicemics4Povinně volitelnýdrzkK - 39ano
DKC-FY2Spektroskopické metody pro nedestruktivní diagnostikucs4Povinně volitelnýdrzkK - 39ano
DKC-ET2Vybrané diagnostické metody, spolehlivost, jakostcs4Povinně volitelnýdrzkK - 39ano
DKC-AM2Vybrané kapitoly měřicí technikycs4Povinně volitelnýdrzkK - 39ano
DKC-VE2Vybrané statě z elektrických strojů a přístrojůcs4Povinně volitelnýdrzkK - 39ano
DKX-JA6Angličtina pro doktorandyen4VolitelnýdrzkCj - 26ano
DKC-CVPCitování ve vědecké praxics2VolitelnýdrzkK - 26ano
DKC-RIZŘešení inovačních zadánícs2VolitelnýdrzkK - 39ano
Libovolný ročník, celoroční semestr
ZkratkaNázevJ.Kr.Pov.Uk.Hod. rozsahSk.Ot.
DKX-QJAZkouška z angličtiny před státní doktorskou zkouškuen4VolitelnýdrzkK - 3ano