studijní program

Teleinformatika

Fakulta: FEKTZkratka: DKC-TLIAk. rok: 2022/2023

Typ studijního programu: doktorský

Kód studijního programu: P0714D060011

Udělovaný titul: Ph.D.

Jazyk výuky: čeština

Akreditace: 28.5.2019 - 27.5.2029

Forma studia

Kombinované studium

Standardní doba studia

4 roky

Garant programu

Oborová rada

Oblasti vzdělávání

Oblast Téma Podíl [%]
Elektrotechnika Bez tematického okruhu 100

Cíle studia

Doktorand se naučí tvůrčím způsobem využívat teoretické znalosti získané jak studiem vybraných kurzů, tak vlastní tvůrčí činností. Tyto poznatky je schopni efektivně využití při následném návrhu vlastních a inovátorských řešení v rámci dalšího experimentálního vývoje a aplikačního výzkumu. Důraz je tak kladen na získání jak teoretických, tak i praktických dovedností, dále samostatnost v rozhodování, formulování vědecko-výzkumných hypotéz pro přípravu projektů základního až aplikovaného výzkumu, schopnost hodnocení výsledků a jejich prezentace ve formě vědeckých textů a prezentací před vědeckou komunitou.

Profil absolventa

Doktorský studijní program "Teleinformatika" je zaměřen na přípravu špičkových vědeckých a výzkumných specialistů, kteří budou mít hluboké znalosti principů a technik využívaných v komunikačních a datových drátových i bezdrátových sítích a s tím souvisejících oblastí jako je i vlastní sběr, zpracování a zpětná reprezentace užitečných uživatelských dat na úrovni aplikační vrstvy. Hlavní části studia tvoří oblasti teoretické informatiky a komunikační techniky. Absolvent má široké znalosti komunikačních a informačních technologií, datových přenosů a jejich zabezpečení. Absolvent se orientuje v operačních systémech, počítačových jazycích a databázových systémech, jejich užití včetně návrhu vhodného software a uživatelských aplikací. Je schopen navrhovat nová technologická řešení komunikačních zařízení a informačních systémů určených pro pokročilý přenos informací.

Charakteristika profesí

Absolventi programu "Teleinformatika" se uplatňují zejména ve výzkumných, vývojových a projekčních týmech, v oblasti odborné činnosti ve výrobních nebo obchodních organizacích, v akademické sféře a v dalších institucích zabývajících se vědou, výzkumem, vývojem a inovacemi, ve všech oblastech společnosti, kde dochází k aplikaci a využití komunikačních systémů a přenosu informace datovými sítěmi.
Uplatnění naši absolventi nalézají zejména při analýze, návrhu, tvorbě nebo správě komplexních systémů pro přenos a zpracování dat, a také při programování, integraci, podpoře, údržbě nebo prodeji těchto systémů.

Podmínky splnění

Studium doktoranda probíhá podle individuálního studijního plánu, který zpracuje v úvodu studia školitel doktoranda ve spolupráci s doktorandem. V individuálním studijním plánu jsou specifikovány všechny povinnosti stanovené v souladu se Studijním a zkušebním řádem VUT, které musí doktorand k úspěšnému ukončení studia splnit. Tyto povinnosti jsou časově rozvrženy do celého období studia, jsou bodově ohodnoceny a v pevně daných termínech probíhá kontrola jejich plnění. Student si zapíše a vykoná zkoušky z povinných předmětů, minimálně dvou povinně volitelných předmětů ohledem na zaměření jeho disertační práce, a dále minimálně dvou volitelných předmětů (Angličtina pro doktorandy, Řešení inovačních zadání, Vědecké publikování od A do Z).
Ke státní doktorské zkoušce se může student přihlásit až po vykonání všech zkoušek předepsaných jeho individuálním studijním plánem. Před státní doktorskou zkouškou student vypracuje pojednání k disertační práci, v němž detailně popíše cíle práce, důkladné zhodnocení stavu poznání v oblasti řešené disertace, charakteristiku metod, které hodlá při řešení uplatňovat. Obhajoba pojednání, které je oponováno, je součástí státní doktorské zkoušky. V další části zkoušky musí student prokázat hluboké teoretické i praktické znalosti v oblasti mikroelektroniky, elektrotechnologie, fyziky materiálů, nanotechnologií, elektrotechniky, elektroniky, teorie obvodů. Státní doktorská zkouška probíhá ústní formou a kromě diskuze nad pojednáním k disertační práci se také skládá z tematických okruhů týkajících se povinných a povinně volitelných předmětů.
K obhajobě disertační práce se student hlásí po vykonání státní doktorské zkoušky a po splnění podmínek pro ukončení, jakými jsou účast na výuce, vědecká a odborná činnost (tvůrčí činnost), a minimálně měsíční studijní nebo pracovní stáž na zahraniční instituci anebo účasti na mezinárodním tvůrčím projektu.

Vytváření studijních plánů

Studium doktoranda probíhá podle individuálního studijního plánu (dále jen ISP), který zpracuje v úvodu studia školitel doktoranda ve spolupráci s doktorandem. Individuální studijní plán je pro doktoranda závazný. Jsou v něm specifikovány všechny povinnosti stanovené v souladu se Studijním a zkušebním řádem VUT, které musí doktorand k úspěšnému ukončení studia splnit. Tyto povinnosti jsou časově rozvrženy do celého období studia, jsou bodově ohodnoceny a v pevně daných termínech probíhá kontrola jejich plnění. Průběžné bodové hodnocení všech aktivit doktoranda je vedeno v dokumentu „Celkové bodové hodnocení doktoranda“ a je součástí ISP. Při zahájení dalšího roku studia pak školitel do ISP zaznamená případné změny. Nejpozději do 15. 10. každého roku studia odevzdává doktorand vytištěný a podepsaný ISP na vědeckém oddělení fakulty ke kontrole a založení.
Během prvních čtyř semestrů skládá doktorand zkoušky z povinných, povinně volitelných anebo volitelných předmětů pro splnění bodových limitů ze Studijní oblasti, a současně se intenzivně zabývá vlastním studiem a analýzou poznatků v oboru stanoveném tématem disertační práce a průběžným publikováním takto získaných poznatků a vlastních výsledků. V dalších semestrech se doktorand již více soustřeďuje na výzkum a vývoj, který souvisí s tématem disertační práce, na publikování výsledků své tvůrčí práce a na vlastní zpracování disertační práce.
Do konce druhého roku studia skládá doktorand státní doktorskou zkoušku, kterou prokazuje široký rozhled a hluboké znalosti v oboru, souvisejícím s tématem disertační práce. K této zkoušce se musí přihlásit nejpozději do 30. dubna ve druhém roce svého studia. Státní doktorské zkoušce předchází zkouška z anglického jazyka.
Ve třetím a čtvrtém roce svého studia provádí doktorand potřebnou výzkumnou činnost, publikuje dosažené výsledky a zpracovává svoji disertační práci. Součástí studijních povinností v doktorském studijním programu je absolvování části studia na zahraniční instituci nebo účast na mezinárodním tvůrčím projektu s výsledky publikovanými nebo prezentovanými v zahraničí nebo jiná forma přímé účasti studenta na mezinárodní spolupráci, což je nutné doložit nejpozději při odevzdání disertační práce.
Doktorandi ve čtvrtém roce studia předkládají do konce zimního zkouškového období svému školiteli rozpracovanou disertační práci, který ji ohodnotí. Disertační práci doktorand odevzdává do konce 4. roku studia.
Student prezenční formy doktorského studia je v průběhu studia povinen absolvovat pedagogickou praxi, tj. působit v procesu výuky. Zapojení doktoranda do pedagogické činnosti je součástí jeho vědecké přípravy. Pedagogickou praxí doktorand získává zkušenosti v předávání poznatků a zdokonaluje prezentační dovednosti. Skladbu pedagogických aktivit (cvičení, laboratorní cvičení, vedení projektů apod.) určí doktorandovi vedoucí daného ústavu po dohodě se školitelem. Povinnost pedagogické praxe se nevztahuje na doktorandy-samoplátce a na doktorandy v kombinované formě studia. Zapojení do výuky v rámci pedagogické praxe potvrdí po jejím splnění školitel v IS VUT.

Vypsaná témata doktorského studijního programu

1. kolo (podání přihlášek od 01.04.2022 do 15.05.2022)

  1. Bezpečnost v konvergovaných sítích

    Cílem je analyzovat nejnovější vývoj a trendy v oblasti konvergovaných sítí, zejména problémy ochrany proti kybernetickým útokům. Na podkladě získaných poznatků se předpokládá návrh inovovaných metod obrany a ochrany, nebo metody nové. Výzkum vyžaduje přehled v oblasti sítí, zkušenosti s prací s programy MATLAB nebo SCILAB, využívat se bude pravděpodobně alespoň jeden z jazyků VHDL, C, Java, evoluční algoritmy, v případě zájmu vývojový systém FPGA.

    Školitel: Škorpil Vladislav, doc. Ing., CSc.

  2. Časově-prostorová analýza a syntéza zvukového pole

    Metoda časově-prostorové analýzy ukazuje kumulativní vývoj zvukového pole jako funkci směru intenzity zvuku formou prostorové impulsní odezvy. Aplikacemi této metody je např. analýza akustiky poslechových prostorů, odhad směru přicházejícího zvuku a další. Časově-prostorová syntéza naopak umožňuje percepčně založenou reprodukci 3D zvukového pole pro filmovou a mutimediální produkci, virtuální a rozšířenou realitu nebo 360-stupňová videa. Cílem disertační práce výzkum a vývoj metod snímání zvukového pole pomocí mikrofonních polí a jejich následné syntézy pro specifické reprodukční systémy.

    Školitel: Schimmel Jiří, doc. Ing., Ph.D.

  3. Časově-prostorová analýza a syntéza zvukového pole

    Metoda časově-prostorové analýzy ukazuje kumulativní vývoj zvukového pole jako funkci směru intenzity zvuku formou prostorové impulsní odezvy. Aplikacemi této metody je např. analýza akustiky poslechových prostorů, odhad směru přicházejícího zvuku a další. Časově-prostorová syntéza naopak umožňuje percepčně založenou reprodukci 3D zvukového pole pro filmovou a mutimediální produkci, virtuální a rozšířenou realitu nebo 360-stupňová videa. Cílem disertační práce výzkum a vývoj metod snímání zvukového pole pomocí mikrofonních polí a jejich následné syntézy pro specifické reprodukční systémy.

    Školitel: Schimmel Jiří, doc. Ing., Ph.D.

  4. Elektronicky konfigurovatelné analogové obvody

    Téma je zaměřeno na návrh dvojbranů, zejména pak filtračních obvodů či např. oscilátorů s možností externí elektronické změny významných parametrů obvodu či v případě filtru i typu kmitočtové odezvy. Předpokládá se i návrh struktur s prvky neceločíselného řádu. Pro tyto účely budou využity především již existující aktivní prvky, popř. budou navrženy jejich modifikované varianty. Předkládají se simulace nejen s jednoduchými modely, ale i s modely na tranzistorové úrovni. Při experimentálním ověřování budou práce zaměřeny především na behaviorální modelování.

    Školitel: Jeřábek Jan, doc. Ing., Ph.D.

  5. Klinicky interpretovatelné strojové učení v oblasti prediktivní analýzy neurodegenerativních a neurovývojových onemocnění

    Se stárnutím populace narůstá potřeba pro počítačovou analýzu dat pacientů trpících neurodegenerativními nebo neurovývojovými onemocněními za účelem objektivní diagnostiky a odhadu progrese, léčby, ale také prevence těchto onemocnění. Cílem této dizertační práce je výzkum a vývoj multimodálních a klinicky interpretovatelných metod strojového učení v oblasti kvantitativní analýzy neurodegenerativních a neurovývojových onemocnění s využitím motorických i nemotorických digitálních biomarkerů. Ve spolupráci s neurology z Fakultní nemocnice u sv. Anny v Brně a Středoevropského technologického institutu Masarykovy univerzity budou vytvořené metody integrovány do systémů založených na technologiích Health 4.0.

    Školitel: Galáž Zoltán, Ing., Ph.D.

  6. Učení se z jedné třídy pro potřeby hledání anomálií v obraze komplexních tvarů

    Klasifikace z jedné třídy zahrnuje techniky strojového učení se modelu s použitím „normálním“ dat (či značně nevyvážených dat) a předpovídání, zda jsou nová data normální či vykazují anomálii oproti trénovacím datům. Tato technika má vysoký potenciál pro uplatnění v mnoha vědních odvětví, zejména v oblasti vizuální kontroly kvality a výrobků. Cílem disertační práce je návrh a implementace inovativních technik založených na strojovém učení, které budou sloužit pro automatickou detekci poruch komplexních tvarů.

    Školitel: Burget Radim, prof. Ing., Ph.D.

Struktura předmětů s uvedením ECTS kreditů (studijní plán)

Libovolný ročník, zimní semestr
ZkratkaNázevJ.Kr.Pov.Prof.Uk.Hod. rozsahSk.Ot.
DKC-ET1Elektrotechnické materiály, materiálové soustavy a výrobní procesycs4Povinně volitelný-drzkK - 39ano
DKC-EE1Matematické modelování v elektroenergeticecs4Povinně volitelný-drzkK - 39ano
DKC-ME1Moderní mikroelektronické systémycs4Povinně volitelný-drzkK - 39ano
DKC-RE1Návrh moderních elektronických obvodůcs4Povinně volitelný-drzkS - 39ano
DKC-TK1Optimalizační metody a teorie hromadné obsluhycs4Povinně volitelný-drzkK - 39ano
DKC-FY1Rozhraní a nanostrukturycs4Povinně volitelný-drzkK - 39ano
DKC-TE1Speciální měřicí metodycs4Povinně volitelný-drzkK - 39ano
DKC-MA1Statistika. stochastické procesy, operační výzkumcs4Povinně volitelný-drzkK - 39ano
DKC-AM1Vybrané kapitoly řídicí technikycs4Povinně volitelný-drzkK - 39ano
DKC-VE1Vybrané statě z výkonové elektroniky a elektrických pohonůcs4Povinně volitelný-drzkK - 39ano
DKX-JA6Angličtina pro doktorandyen4Volitelný-drzkCj - 26ano
DKC-RIZŘešení inovačních zadánícs2Volitelný-drzkK - 39ano
DKC-EIZVědecké publikování od A do Zcs2Volitelný-drzkK - 26ano
Libovolný ročník, letní semestr
ZkratkaNázevJ.Kr.Pov.Prof.Uk.Hod. rozsahSk.Ot.
DKC-TK2Aplikovaná kryptografiecs4Povinně volitelný-drzkK - 39ano
DKC-MA2Diskrétní procesy v elektrotechnicecs4Povinně volitelný-drzkK - 39ano
DKC-ME2Mikroelektronické technologiecs4Povinně volitelný-drzkK - 39ano
DKC-RE2Moderní digitální bezdrátová komunikacecs4Povinně volitelný-drzkK - 39ano
DKC-EE2Nové trendy a technologie výroby energiecs4Povinně volitelný-drzkK - 39ano
DKC-TE2Numerické úlohy s parciálními diferenciálními rovnicemics4Povinně volitelný-drzkK - 39ano
DKC-FY2Spektroskopické metody pro nedestruktivní diagnostikucs4Povinně volitelný-drzkK - 39ano
DKC-ET2Vybrané diagnostické metody, spolehlivost, jakostcs4Povinně volitelný-drzkK - 39ano
DKC-AM2Vybrané kapitoly měřicí technikycs4Povinně volitelný-drzkK - 39ano
DKC-VE2Vybrané statě z elektrických strojů a přístrojůcs4Povinně volitelný-drzkK - 39ano
DKX-JA6Angličtina pro doktorandyen4Volitelný-drzkCj - 26ano
DKC-CVPCitování ve vědecké praxics2Volitelný-drzkK - 26ano
DKC-RIZŘešení inovačních zadánícs2Volitelný-drzkK - 39ano
Libovolný ročník, celoroční semestr
ZkratkaNázevJ.Kr.Pov.Prof.Uk.Hod. rozsahSk.Ot.
DKX-QJAZkouška z angličtiny před státní doktorskou zkouškuen4Volitelný-drzkK - 3ano