studijní program

Teoretická elektrotechnika

Fakulta: FEKTZkratka: DKC-TEEAk. rok: 2022/2023

Typ studijního programu: doktorský

Kód studijního programu: P0714D060005

Udělovaný akademický titul: Ph.D.

Jazyk výuky: čeština

Akreditace: 28.5.2019 - 27.5.2029

Forma studia

Kombinované studium

Standardní doba studia

4 roky

Garant programu

Oborová rada

Oblasti vzdělávání

Oblast Téma Podíl [%]
Elektrotechnika Bez tematického okruhu 100

Cíle studia

Doktorský studijní program "Teoretická elektrotechnika" je zaměřen na přípravu špičkových vědeckých a výzkumných specialistů v různých oblastech teoretické elektrotechniky. Zejména v teorii a aplikacích elektromagnetismu, elektrických obvodů, v metodách elektro/magnetických měření a metodách zpracování signálů. Příprava je podpořena poskytnutím znalostí v souvisejících matematických disciplínách, jakými jsou problematika stochastických procesů a statistických metod vyšetřování zkoumaných systémů, analýza systémů pomocí funkcionálních rovnic, návrh multikriteriálních optimalizačních metod, numerických metod řešení spojitých a diskrétních dynamických systémů a dalších. Cílem programu je poskytnout ve všech těchto dílčích zaměřeních doktorské vzdělání absolventům vysokoškolského magisterského studia, prohloubit jejich teoretické znalosti a rozvíjet spojené praktické odborné dovednosti a naučit je metodám vědecké práce.

Profil absolventa

Absolventi doktorského studia v programu "Teoretická elektrotechnika" umí řešit vědecké a složité technické inovační úlohy v oblasti elektrotechniky. A to v teoretické rovině a také při jejím praktickém nasazení ve výzkumu, vývoji a výrobě. Pro řešení technických výzkumných a vývojových úloh jsou vybaveni komplexními znalostmi z teorie a aplikací elektromagnetického pole, elektrických obvodů, metod měření veličin a zpracování signálů a jejich fyzikálním a matematickým popisem. Jsou schopni tvůrčím způsobem využívat moderní výpočetní, měřicí a diagnostickou techniku.
Díky kvalitnímu rozvinutému teoretickému vzdělání, odborným praktickým dovednostem a specializaci ve vybraném oboru jsou absolventi doktorského studia vyhledáváni jako specialisté a řídící pracovníci v oblasti obecné elektrotechniky. Uplatní se jako vědečtí, výzkumní a řídící pracovníci v základním či aplikovaném výzkumu, jako specializovaní odborníci a vedoucí týmů vývoje, konstrukce a provozu ve výzkumných a vývojových institucích a elektrotechnických a elektronických výrobních společnostech působících v oblasti pokročilých technologií.

Charakteristika profesí

Specialisté a řídící pracovníci v oblasti obecné elektrotechniky, vědečtí, výzkumní a řídící pracovníci v základním či aplikovaném výzkumu, specializovaní odborníci a vedoucí týmů vývoje, konstrukce a provozu ve výzkumných a vývojových institucích a elektrotechnických a elektronických výrobních společnostech působících v oblasti pokročilých technologií

Podmínky splnění

Studium doktoranda probíhá podle individuálního studijního plánu, který zpracuje v úvodu studia školitel doktoranda ve spolupráci s doktorandem. V individuálním studijním plánu jsou specifikovány všechny povinnosti stanovené v souladu se Studijním a zkušebním řádem VUT, které musí doktorand k úspěšnému ukončení studia splnit. Tyto povinnosti jsou časově rozvrženy do celého období studia, jsou bodově ohodnoceny a v pevně daných termínech probíhá kontrola jejich plnění.
Student si zapíše a vykoná zkoušky z povinných předmětů Numerické úlohy s parciálními diferenciálními rovnicemi a Zkouška z angličtiny před státní doktorskou zkoušku, minimálně dvou povinně volitelných předmětů ohledem na zaměření jeho disertační práce, a dále minimálně dvou volitelných předmětů (Angličtina pro doktorandy, Řešení inovačních zadání, Vědecké publikování od A do Z, Citování ve vědecké praxi).
Ke státní doktorské zkoušce se může student přihlásit až po vykonání všech zkoušek předepsaných jeho individuálním studijním plánem. Před státní doktorskou zkouškou student vypracuje pojednání k disertační práci, v němž detailně popíše cíle práce, důkladné zhodnocení stavu poznání v oblasti řešené disertace, případně charakteristiku metod, které hodlá při řešení uplatňovat.
Obhajoba pojednání, které je oponováno, je součástí státní doktorské zkoušky. V další části zkoušky musí student prokázat hluboké teoretické i praktické znalosti v oblasti elektrotechniky, elektromagnetismu, teorie obvodů, metod měření elektrických a jiných fyzikálních veličin, zpracování a analýzy signálů a matematického modelování technických procesů. Státní doktorská zkouška probíhá ústní formou a kromě diskuze nad pojednáním k disertačním práce se také skládá z tematických okruhů týkajících se povinných a povinně volitelných předmětů.
K obhajobě disertační práce se student hlásí po vykonání státní doktorské zkoušky a po splnění podmínek pro ukončení, jakými jsou účast na výuce, vědecká a odborná činnost (tvůrčí činnost), a minimálně měsíční studijní nebo pracovní stáž na zahraniční instituci anebo účasti na mezinárodním tvůrčím projektu.

Vytváření studijních plánů

Studium doktoranda probíhá podle individuálního studijního plánu (dále jen ISP), který zpracuje v úvodu studia školitel doktoranda ve spolupráci s doktorandem. Individuální studijní plán je pro doktoranda závazný. Jsou v něm specifikovány všechny povinnosti stanovené v souladu se Studijním a zkušebním řádem VUT, které musí doktorand k úspěšnému ukončení studia splnit. Tyto povinnosti jsou časově rozvrženy do celého období studia, jsou bodově ohodnoceny a v pevně daných termínech probíhá kontrola jejich plnění. Průběžné bodové hodnocení všech aktivit doktoranda je vedeno v dokumentu „Celkové bodové hodnocení doktoranda“ a je součástí ISP. Při zahájení dalšího roku studia pak školitel do ISP zaznamená případné změny. Nejpozději do 15. 10. každého roku studia odevzdává doktorand vytištěný a podepsaný ISP na vědeckém oddělení fakulty ke kontrole a založení.
Během prvních čtyř semestrů skládá doktorand zkoušky z povinných, povinně volitelných anebo volitelných předmětů pro splnění bodových limitů ze Studijní oblasti, a současně se intenzivně zabývá vlastním studiem a analýzou poznatků v oboru stanoveném tématem disertační práce a průběžným publikováním takto získaných poznatků a vlastních výsledků. V dalších semestrech se doktorand již více soustřeďuje na výzkum a vývoj, který souvisí s tématem disertační práce, na publikování výsledků své tvůrčí práce a na vlastní zpracování disertační práce.
Do konce druhého roku studia skládá doktorand státní doktorskou zkoušku, kterou prokazuje široký rozhled a hluboké znalosti v oboru, souvisejícím s tématem disertační práce. K této zkoušce se musí přihlásit nejpozději do 30. dubna ve druhém roce svého studia. Státní doktorské zkoušce předchází zkouška z anglického jazyka.
Ve třetím a čtvrtém roce svého studia provádí doktorand potřebnou výzkumnou činnost, publikuje dosažené výsledky a zpracovává svoji disertační práci. Součástí studijních povinností v doktorském studijním programu je absolvování části studia na zahraniční instituci nebo účast na mezinárodním tvůrčím projektu s výsledky publikovanými nebo prezentovanými v zahraničí nebo jiná forma přímé účasti studenta na mezinárodní spolupráci, což je nutné doložit nejpozději při odevzdání disertační práce.
Doktorandi ve čtvrtém roce studia předkládají do konce zimního zkouškového období svému školiteli rozpracovanou disertační práci, který ji ohodnotí. Disertační práci doktorand odevzdává do konce 4. roku studia.
Student prezenční formy doktorského studia je v průběhu studia povinen absolvovat pedagogickou praxi, tj. působit v procesu výuky. Zapojení doktoranda do pedagogické činnosti je součástí jeho vědecké přípravy. Pedagogickou praxí doktorand získává zkušenosti v předávání poznatků a zdokonaluje prezentační dovednosti. Skladbu pedagogických aktivit (cvičení, laboratorní cvičení, vedení projektů apod.) určí doktorandovi vedoucí daného ústavu po dohodě se školitelem. Povinnost pedagogické praxe se nevztahuje na doktorandy-samoplátce a na doktorandy v kombinované formě studia. Zapojení do výuky v rámci pedagogické praxe potvrdí po jejím splnění školitel v IS VUT.

Vypsaná témata doktorského studijního programu

  1. Agregační operátory ve fuzzy logice

    Fuzzy logika je forma vícehodnotové logiky, která má bohaté uplatnění v mnoha vědných a praktických oborech. Modelování reálních situací vyžaduje použití fuzzy logických spojek. Modelování těchto spojek se často realizuje pomocí agregačních operátorů. Konstrukce a vlastnosti agregačních operátorů budou hlavní náplní dizertační práce.

    Školitel: Hliněná Dana, doc. RNDr., Ph.D.

  2. Algebraické hyperstruktury v autonomním řízení

    Cílem disertace je zkoumat možnosti využití algebraické teorie hyperstruktur pro řízení autonomních vozidel a řešení dopravních situací. Předpokládá se využití hrubých množin, zobecnění teorie automatů a dalších algebraických nástrojů umožňujících modelování situací využívajících aspektů mnohoznačnosti výsledků algebraických operací a jejich přibližného vyjádření.

    Školitel: Novák Michal, doc. RNDr., Ph.D.

  3. Analýza metod pro rekonstrukci obrazu v EIT

    Cílem práce je analýza matematických modelů pro rekonstrukci obrazu elektrické impedanční tomografie z pohledu aplikovatelnosti na jednotlivé inženýrské obory (chemický průmysl, geologie, materiálové inženýrství a diagnostika, apod.). Výstupem práce bude teoretický rozbor a optimalizace limitujících faktorů metod při řešení vybraných technických úloh včetně vyhodnocení nejistot měření (měrná konduktivita a poloha nehomogenit), výpočetní náročnosti, apod. Konkrétně bude práce zaměřena např. na a) optimalizaci parametrů matematického modelu s ohledem na skutečné parametry fyzikálního modelu, b) metody regularizace, c) metody zpracování obrazu (segmentace nehomogenity), d) metody adaptivního síťování podle průběžných výsledků rekonstrukce.

    Školitel: Mikulka Jan, doc. Ing., Ph.D.

  4. Autonomní pohyb dronů v prostředí bez GPS

    Práce je zaměřena na vývoj algoritmů fúze dat, umělé inteligence a jejich testování za účelem řízení autonomních bezpilotních letounů bez GPS. Pro správnou volbu řídicích signálů je nutné zpracovávat data ze senzorů v reálném čase. Algoritmy tedy musí pracovat rychle a adaptabilně.

    Školitel: Marcoň Petr, doc. Ing., Ph.D.

  5. Laděné nano-struktury

    Jednou z aktuálních oblastí výzkumu jsou práce na sofistikovaných nano-strukturách. Práce je zaměřena do oblasti návrhu, modelování a experimentů s laděnými nanostrukturami v oblasti 10-500THz. Jsou zde tři cílei. První zaměření je z oboru numerického modelování struktur. Na základě reálných vlastností nanomateriálů vytvořit numerický model a analyzovat strukturu. Druhá oblast je zaměřena na návrh metod a metodik ověření výsledků pomocí experimentů, měření a ověření předpokladů očekávaných z teoretického modelu. Modelováním metodou konečných prvků, konečných objemů (například v programu ANSYS, ANSOFT, MAXWELL atd.) se navrhne model chování dynamiky hmoty. Třetí oblast výzkumu je zaměřena do oboru technologie. V tomto zaměření se očekává výzkum technologií pro realizaci navržených struktur a jejich realizovatelnost v experimentální části tématu. Výsledky budou sloužit pro výzkum speciálních laděných periodických struktur. Témata lze řešit odděleně, není podmínkou všechna pro jednoho uchazeče. Téma je součástí vypsaného grantu CZ.

    Školitel: Fiala Pavel, prof. Ing., Ph.D.

  6. Modelování a rekonstrukce obrazu v EIT pomocí prvků umělé inteligence a strojového učení

    Cílem disertační práce je tvorba modelu pro rekonstrukci obrazu v elektrické impedanční tomografii s využitím prvků strojového učení a umělé inteligence. Výstupem práce bude funkční systém včetně dostatečné sady syntetických i reálných dat pro učení navržených modelů k identifikaci nehomogenit elektrické impedance uvnitř neznámého prostředí. Předpokládá se také tvorba laboratorního modelu tomografu pro získání skutečných dat k rekonstrukci měrné vodivosti a případně optimalizace navržených metod pro navazující aplikovaný výzkum řešený na UTEE.

    Školitel: Mikulka Jan, doc. Ing., Ph.D.

  7. Modely struktury hmoty

    Práce je zaměřena na teoretické odvození numerických modelů založených na kvantově mechanických modelech hmoty a v kombinaci se stochastickým, jak deterministickým tak nedeterministickým přístupem určení neurčitosti formulovat pro obyčejné diferenciální rovnice jednoduchý numerický model nanoelementární části systému, periodického systému. Navazuje na výzkum modifikací takto vytovřeného modelu na bázi numerické metody konečných prvků, konečných objemů, hraničních prvků pro statické i dynamické modely formulované pomocí parciálních diferenciálních rovnic. Cílem práce je navrhnout numerický model jako silný nástroj pro analýzu a popis vlastností jak periodické tak neperiodické struktury a její geometrie na atomární a subatomární úrovni, verifikace na jednoduchém ověřitelném příkladu, zkoumat parametry takto vzniklého numerického modelu a porovnat s požadavky kladenými na modely určené pro dynamiku elektrického výboje a vyhodnotit zadané parametry. Téma je součástí grantu CZ.

    Školitel: Fiala Pavel, prof. Ing., Ph.D.

  8. Multispektrální elektrická impedanční tomografie

    Cílem disertační práce je zvýšení vědeckého poznání v oblasti nedestruktivní analýzy vnitřní struktury materiálu s ohledem na optimalizaci metod řešení inverzní úlohy rekonstrukce elektrických veličin, využití multispektrální šumové a impulzní analýzy zkoumaného prostředí, prvků umělé inteligence a strojového učení. Návrh metod bude prováděn s ohledem na konkrétní praktické aplikace, např. průzkum zemin, stavu stavebních konstrukcí, apod. Výzkumná činnost bude zahrnovat modelování prostředí a měřicího systému ekvivalentními obvody, simulaci, emulaci, měření na skutečném prostředí včetně vyhodnocení vlivu kmitočtu budicího signálu na kvalitu rekonstrukce elektrických vlastností analyzovaného prostředí.

    Školitel: Mikulka Jan, doc. Ing., Ph.D.

  9. Nízkoúrovňová magnetická měření

    Téma se zabývá dvěma klíčovými oblastmi. První je zaměřena na pokračování výzkumu uceleného systému měřicích metod a metrologie pro nízkoúrovňová magnetická měření s respektem silně rušeného okolního prostředí v úzkém frekvenčním pásmu f= 0.1-30Hz. Je vhodné se zaměřit na metody dosahujících výsledky S/Š <0.05 a rekonstrukci signálu. S navrženými metodami se provádí vyhodnocení malých změn magnetických polí. Druhá oblast navazuje na výzkum změn chování člověka a celkově odezvy lidského organismu, jeho vlastnostmi a reakcí na změny magnetického pole. Jako nástroje se používají postupy jak deterministické, tak stochastické, s nejnovějším matematickým aparátem a nedestruktivními měřicími metodami.

    Školitel: Fiala Pavel, prof. Ing., Ph.D.

  10. Numerické metody řešení celočíselných a frakcionálních kontrolních systémů

    Cílem disertace je modifikace numerické semi-analytické metody založené na Adomianově dekompoziční metodě a integrálních transformací pro řešení počátečních úloh celočíselných a frakcionálních kontrolních systémů ve smyslu Caputovy frakcionální derivace. Rovněž bude vyšetřována konvergenční analýza navržené metody.

    Školitel: Šmarda Zdeněk, doc. RNDr., CSc.

  11. Numerické modely stochastických úloh

    V procesu modelování se vyskytují neřešené problémy v oblasti rozsáhlých mnohaparametrických úloh s explicitním popisem minima parametrů. V numerickém modelování existují přístupy řešení takovým modelů. Při vhodném formulování a sestavení metody se stávají výkonnými nástroji při vědeckém přístupu k řešení základního i aplikovaného výzkumu. Cílem doktorského studia je popsat a formulovat přístupy řešení rozsáhlých periodických systémů s mírou neperiodicity, na experimentech ověřit vlastnosti modelů. Cíleně provést testování na modelech nanomateriálových modelů, například na strukturách grafenu, povrchových atomárních vrstev s aplikací plazmatu.

    Školitel: Fiala Pavel, prof. Ing., Ph.D.

  12. Pokročilá analýza patologické tkáně mozku pomocí MRI

    Cílem práce je výzkum v oblasti klasifikace patologických tkání vyskytujících se v mozku a pokročilá analýza biomedicínských obrazů získaných právě z patologické tkáně v mozku.

    Školitel: Marcoň Petr, doc. Ing., Ph.D.

  13. Prostorová analýza silového zatížení deformované rostoucí páteře a využití modelování korekčních sil k minimalizaci rozsahu operace skoliózy

    Deformita páteře v dětském věku (skolióza) je onemocnění, jehož průběh v čase nelze předvídat. Výsledky konzervativní terapie jsou pochybné a při určitém stupni zakřivení je nutné přistoupit k operační léčbě s rizikem opakovaných reoperací a komplikací. V současné době používaný systém rostoucích tyčí a usměrňovaného růstu zasahuje průměrně 9 segmentů páteře, tyto se stávají nepohyblivé a mají vliv na přetížení zbývajících volných segmentů pod fúzí, což se projeví časnějším výskytem degenerativních změn, bolestmi zad v dospělosti, omezenou pohybovou aktivitou a poškozením muskuloskeletálního systému. Podstatou doktorského práce je navržení nové metodiky pro minimalizaci nežádoucích dopadů operační léčby progredující deformity páteře na dětech pomocí 3D modelování rozložení mechanických napětí v prostorové simulaci plánovaného zákroku. Do projektu budou zařazeni pacienti s idiopatickou, symptomatologickou a kongenitální skoliózou progredující přes konzervativní terapii, kteří by museli podstoupit jednu z uvedených metod operační terapie. Cílem práce je návrh unikátního operačního řešení korekce idiopatické, sypmtomatologické a kongenitální deformity osteotomií jednoho obratle bez negativních vlivů na okolní segmenty páteře pomocí 3D modelování zatížení se snahou o predikci vývoje páteře a sledování regenerace intervertebrálních plotének na MRI. Práce bude řešena ve spolupráci s fakultní nemocnicí v Brně Bohunicích.

    Školitel: Mikulka Jan, doc. Ing., Ph.D.

  14. Samooptimalizační algoritmy v průmyslové výrobě

    Práce je zaměřena na vývoj algoritmů umělé inteligence pro zvýšení míry autonomity jednotlivých prvků pro samo-optimalizaci komponent průmyslové výroby. Zaměření bude zejména na digitální obálku prvků výroby a její aplikaci v oblasti iniciativy Průmyslu 4.0.

    Školitel: Marcoň Petr, doc. Ing., Ph.D.

  15. Speciální metody měření magnetických vlastností materiálů

    Cílem disertační práce bude návrh nových a výrazné zlepšení stávajících metod umožňujících pro vzorky materiálu určit jeho materiálové vlastnosti. Zaměření bude na měření anizotropních magnetizačních charakteristik s potřebnou podporou numerických metod. Například nové kovové materiály v 3D tiskárnách vykazují výraznou anizotropii. Další oblastí bude měření materiálů s malou magnetickou susceptibilitou. Různé metody dávají odlišné výsledky, cílem tedy bude výsledky porovnat a sjednotit. Zvláštní oblastí je meření magnetických kapalin. U silových metod bude nutná i optimalizace ve FEM.

    Školitel: Drexler Petr, doc. Ing., Ph.D.

  16. Stochastické diferenciální rovnice v elektrotechnice

    Přidáním náhody do některých koeficientů obyčejné diferenciální rovnice vznikne stochastická diferenciální rovnice. Taková rovnice popisuje například průběh proudu v RL obvodu s náhodným zdrojem. Řešením rovnice je potom náhodný proces. Téma zahrnuje vytváření stochastických modelů, numerické řešení stochastických diferenciálních rovnic a statistické zpracování stochastických řešení.

    Školitel: Kolářová Edita, doc. RNDr., Ph.D.

  17. Teorie nelineární akustiky ve spojení s nehomogenními lokálně periodickými strukturami

    Nelineární akustika je relativně moderní výzkumnou disciplínou. Zabývá se šířením akustických vln v nelineárním prostředí, modelováním parametrického akustického pole a souvisejícími aplikacemi. Jedním z problémů, které je potřeba v současné době řešit je analytický popis nelineárního prostředí, případně jeho numerické modelování. Dalším směrem v této oblasti je návrh nehomogenních lokálně periodických struktur, pomocí kterých jsme schopni zacílit akustické vlny do svazku, vytvářet nelineární prvky je např. akustická dioda apod. Aplikačním odvětvím této výzkumné oblasti pak může být např. bezkontaktní testování materiálů. V rámci disertační práce se bude student věnovat popisu a analýze amplitudově modulovaných akustických vln konečných amplitud a analýze parametricky buzených akustických polí. Cílem práce je dále prohloubení stavu poznání v problematice nelineárních akustických interakcí v tekutinách s využitím nehomogenních periodických struktur, metod zpracování vstupních signálu a modulace nosných vln.

    Školitel: Mikulka Jan, doc. Ing., Ph.D.

  18. Úlohy řiditelnosti pro diskrétní rovnice se zpětnou vazbou

    Cílem práce bude řešit některé úlohy z teorie řízení o relativní a křivkové řiditelnosti pro systémy diskrétních rovnic se zpětnou vazbou. Předpokládá se, že budou získána kriteria řiditelnosti a budou konstruovány adekvátní algoritmy pro jejich řešení (včetně konstrukce řídících funkcí). Výchozí literaturou je kniha M. Sami Fadali a Antonio Visioli, Digital Control Engineering, Analysis and Design, Elsewier, 2013 a článek J. Diblík, Relative and trajectory controllability of linear discrete systems with constant coefficients and a single delay, IEEE Transactions on Automatic Control, (https://ieeexplore.ieee.org/document/8443094 ), 2158 - 2165, 2019. Během studia je plánován výjezd na Univerzitu Bialystok, Polsko, kde je podobná problematika studována.

    Školitel: Diblík Josef, prof. RNDr., DrSc.

  19. Využití plazmových nanotechnologií pro návrh nových materiálů elektrod lithno-iontových akumulátorů

    Téma práce je zaměřeno na výzkum, popis, modelování a experimentálních ověření plazmové nanotechnologie umožňující modifikovat funkční vlastnosti povrchu elektrodového systému akumulátorů materiálů, včetně 3D mikro a nanoporézních struktur a to díky výborné konformalitě procesů. Nalezená technologie bude aplikovatelná i pro strukturování materiálů a proleptávání pórů a nanokanálků na rozhraní materiálu, výzkum se mimo jiné zaměří na možnosti tvorby vícevrstvých systémů. Cílem práce je navrhnout pomocí vyhodnocení numerických analýz nanostrukturu nových typů materiálů pro elektrody lithno-iontových akumulátory a navržené struktury experimentálně realizovat/ověřit pomocí kombinace kroků využívajících potenciál moderních nanotechnologií včetně plazmových procesů. Práce je součástí vypisovaného grantového projetku s plánovanou finanční podporou doktoranda.

    Školitel: Fiala Pavel, prof. Ing., Ph.D.

  20. Výzkum vlastností a aplikací šumových elektromagnetických polí

    Měřicí a diagnostické metody založené na využití vyzařovaného elektromagnetického (EM) pole a jeho interakce s testovanými objekty jsou v současné době dobře zvládnutou a široce využívanou technologií. Ovšem naprostá většina systémů založených na zmíněném přístupu používá koncept, kdy je generováno a vyhodnocováno EM pole s definovaným kmitočtem, resp. je tento kmitočet řízeně rozmítán. V tomto případě je nutno brát v úvahu možnost reaktančních vazeb měřeného a měřicího objektu v blízké oblasti, které mohou měření znehodnotit. Naopak, pokud by byly pro diagnostiku použity širokopásmové stochastické signály (šumové signály), bylo by možno tyto vazby potlačit. Téma studia je zaměřeno na výzkum využití konceptu diagnosticky materiálů a elektromagnetických struktur šumovým polem, především v radiofrekvenční a mikrovlnné oblasti, jeho rozvoj a experimentální ověření.

    Školitel: Drexler Petr, doc. Ing., Ph.D.

1. kolo (podání přihlášek od 01.04.2022 do 15.05.2022)

  1. Autonomní komponenty průmyslové výroby

    Práce je zaměřena na vývoj algoritmů umělé inteligence pro zvýšení míry autonomity jednotlivých prvků průmyslové výroby. Zaměření bude zejména na digitální obálku těchto prvků a její aplikaci v oblasti iniciativy Průmyslu 4.0.

    Školitel: Marcoň Petr, doc. Ing., Ph.D.

  2. Bezpilotní letouny v průmyslové výrobě

    Práce je zaměřena na efektivní využití bezpilotních letounů v průmyslové výrobě. Cílem je navrhnout vhodné senzory a algoritmy umělé inteligence pro autonomní pohyb bezpilotního prostředku. Z těchto senzorů provést fúzi dat a optimalizovat pohyb dronu využitím algoritmů umělé inteligence.

    Školitel: Marcoň Petr, doc. Ing., Ph.D.

  3. Obecná řešení slabě zpožděných lineárních diferenciálních systémů

    Cílem bude odvodit explicitní vzorce pro obecné řešení slabě zpožděných lineárních diferenciálních systémů, ukázat jejich případnou redukci na lineární systémy obyčejných diferenciálních rovnic a dokázat výsledky o podmíněné stabilitě. K získání výsledků budou použity různé matematické nástroje, jedním z nich bude Laplaceova transformace. Prvotní literaturou je článek: D. Ya. Khusainov, D. B. Benditkis and J. Diblik, Weak delay in systems with an aftereffect, Functional Differential Equations, 9, 2002, No 3-4, 385-404 a nedávno publikované výsledky pro spojitý i diskrétní případ. Během studia je plánován výjezd na Univerzitu Bialystok, Polsko, kde je podobná problematika studována.

    Školitel: Diblík Josef, prof. RNDr., DrSc.

  4. Řešení slabě zpožděných lineárních diferenčních rovnic v případě nulových vlastních čísel

    Cílem bude odvodit explicitní vzorce pro obecné řešení slabě zpožděných lineárních diferenciálních systémů v případě existence nulových vlastních čísel matice lineárních nezpožděných členů a jejich využití ke stanovení vlastností řešení. K získání výsledků budou použity různé matematické nástroje, jedním z nich bude Laplaceova transformace. Prvotní literaturou je článek: D. Ya. Khusainov, D. B. Benditkis and J. Diblik, Weak delay in systems with an aftereffect, Functional Differential Equations, 9, 2002, No 3-4, 385-404 a nedávno publikované výsledky pro spojitý i diskrétní případ. Během studia je plánován výjezd na Univerzitu Bialystok, Polsko, kde je podobná problematika studována.

    Školitel: Diblík Josef, prof. RNDr., DrSc.

Struktura předmětů s uvedením ECTS kreditů (studijní plán)

Libovolný ročník, zimní semestr
ZkratkaNázevJ.Kr.Pov.Uk.Hod. rozsahSk.Ot.
DKC-ET1Elektrotechnické materiály, materiálové soustavy a výrobní procesycs4Povinně volitelnýdrzkK - 39ano
DKC-EE1Matematické modelování v elektroenergeticecs4Povinně volitelnýdrzkK - 39ano
DKC-ME1Moderní mikroelektronické systémycs4Povinně volitelnýdrzkK - 39ano
DKC-RE1Návrh moderních elektronických obvodůcs4Povinně volitelnýdrzkS - 39ano
DKC-TK1Optimalizační metody a teorie hromadné obsluhycs4Povinně volitelnýdrzkK - 39ano
DKC-FY1Rozhraní a nanostrukturycs4Povinně volitelnýdrzkK - 39ano
DKC-TE1Speciální měřicí metodycs4Povinně volitelnýdrzkK - 39ano
DKC-MA1Statistika. stochastické procesy, operační výzkumcs4Povinně volitelnýdrzkK - 39ano
DKC-AM1Vybrané kapitoly řídicí technikycs4Povinně volitelnýdrzkK - 39ano
DKC-VE1Vybrané statě z výkonové elektroniky a elektrických pohonůcs4Povinně volitelnýdrzkK - 39ano
DKX-JA6Angličtina pro doktorandyen4VolitelnýdrzkCj - 26ano
DKC-RIZŘešení inovačních zadánícs2VolitelnýdrzkK - 39ano
DKC-EIZVědecké publikování od A do Zcs2VolitelnýdrzkK - 26ano
Libovolný ročník, letní semestr
ZkratkaNázevJ.Kr.Pov.Uk.Hod. rozsahSk.Ot.
DKC-TE2Numerické úlohy s parciálními diferenciálními rovnicemics4PovinnýdrzkK - 39ano
DKC-TK2Aplikovaná kryptografiecs4Povinně volitelnýdrzkK - 39ano
DKC-MA2Diskrétní procesy v elektrotechnicecs4Povinně volitelnýdrzkK - 39ano
DKC-ME2Mikroelektronické technologiecs4Povinně volitelnýdrzkK - 39ano
DKC-RE2Moderní digitální bezdrátová komunikacecs4Povinně volitelnýdrzkK - 39ano
DKC-EE2Nové trendy a technologie výroby energiecs4Povinně volitelnýdrzkK - 39ano
DKC-FY2Spektroskopické metody pro nedestruktivní diagnostikucs4Povinně volitelnýdrzkK - 39ano
DKC-ET2Vybrané diagnostické metody, spolehlivost, jakostcs4Povinně volitelnýdrzkK - 39ano
DKC-AM2Vybrané kapitoly měřicí technikycs4Povinně volitelnýdrzkK - 39ano
DKC-VE2Vybrané statě z elektrických strojů a přístrojůcs4Povinně volitelnýdrzkK - 39ano
DKX-JA6Angličtina pro doktorandyen4VolitelnýdrzkCj - 26ano
DKC-CVPCitování ve vědecké praxics2VolitelnýdrzkK - 26ano
DKC-RIZŘešení inovačních zadánícs2VolitelnýdrzkK - 39ano
Libovolný ročník, celoroční semestr
ZkratkaNázevJ.Kr.Pov.Uk.Hod. rozsahSk.Ot.
DKX-QJAZkouška z angličtiny před státní doktorskou zkouškuen4VolitelnýdrzkK - 3ano