studijní program

Power Systems and Power Electronics

Fakulta: FEKTZkratka: DPA-SEEAk. rok: 2021/2022

Typ studijního programu: doktorský

Kód studijního programu: P0713D060006

Udělovaný akademický titul: Ph.D.

Jazyk výuky: angličtina

Akreditace: 28.5.2019 - 27.5.2029

Forma studia

Prezenční studium

Standardní doba studia

4 roky

Garant programu

Oborová rada

Oblasti vzdělávání

Oblast Téma Podíl [%]
Elektrotechnika Bez tematického okruhu 60
Energetika Bez tematického okruhu 40

Cíle studia

Studijní program doktorského studia je zaměřen na přípravu špičkových vědeckých a výzkumných specialistů v nejrůznějších oblastech výkonové elektrotechniky, řídicí techniky, návrhu elektrických strojů, výroby a rozvodu elektrické energie, a užití elektrické energie.
Cílem je poskytnout ve všech těchto dílčích zaměřeních doktorské vzdělání absolventům vysokoškolského magisterského studia, prohloubit jejich teoretické znalosti, dát jím též potřebné speciální vědomosti i praktické dovednosti a naučit je metodám vědecké práce.

Profil absolventa

Cílem postgraduálního doktorského studia programu "Power Systems and Power Electronics" je výchova k vědecké práci v oboru silnoproudé elektrotechniky a elektroenergetiky. Absolventi se uplatní jednak ve výzkumu a vývoji, včetně průmyslového vývoje, jednak jako vědecko-pedagogičtí pracovníci na vysokých školách a rovněž ve vyšších manažerských funkcích.

Charakteristika profesí

Absolvent doktorského studijního programu "Power Systems and Power Electronics" získá hluboké teoretické znalosti, osvojí si základy vědecké práce a naučí se samostatně řešit složité problémy z oblasti vědy a techniky, s využitím celosvětových informačních zdrojů v daném oboru.
Absolvent je připraven k dalšímu vědeckému a odbornému růstu s vysokou mírou adaptibility a najde široké společenské uplatnění jednak v oblasti vědy a výzkumu, včetně výzkumu a vývoje v průmyslových společnostech, a to i jako perspektivní pracovník pro vyšší manažerské funkce, jednak i jako vědecko-pedagogický pracovník na technických univerzitách.

Podmínky splnění

Studium doktoranda probíhá podle individuálního studijního plánu, který zpracuje v úvodu studia školitel doktoranda ve spolupráci s doktorandem. V individuálním studijním plánu jsou specifikovány všechny povinnosti stanovené v souladu se Studijním a zkušebním řádem VUT, které musí doktorand k úspěšnému ukončení studia splnit. Tyto povinnosti jsou časově rozvrženy do celého období studia, jsou bodově ohodnoceny a v pevně daných termínech probíhá kontrola jejich plnění.
Student si zapíše a vykoná zkoušku z povinného kurzu Zkouška z angličtiny před státní doktorskou zkouškou, z povinně volitelných předmětů ohledem na zaměření jeho disertační práce, přičemž alespoň dva jsou voleny z: Matematické modelování v elektroenergetice, Vybrané problémy z výroby elektrické energie, Vybrané statě z výkonové elektroniky a elektrických pohonů, Vybrané statě z elektrických strojů a přístrojů, a dále minimálně dvou volitelných předmětů (Angličtiny pro doktorandy; Citování ve vědecké praxi; Řešení inovačních zadání; Vědecké publikování od A do Z).
Ke státní doktorské zkoušce se může student přihlásit až po vykonání všech zkoušek předepsaných jeho individuálním studijním plánem. Před státní doktorskou zkouškou student vypracuje pojednání k disertační práci, v němž detailně popíše cíle práce, důkladné zhodnocení stavu poznání v oblasti řešené disertace, případně charakteristiku metod, které hodlá při řešení uplatňovat.
Obhajoba pojednání, které je oponováno, je součástí státní doktorské zkoušky. V další části zkoušky musí student prokázat hluboké teoretické i praktické znalosti v oblasti elektrotechniky, elektroniky, elektrických strojů a elektrických přístrojů. Státní doktorská zkouška probíhá ústní formou a kromě diskuze nad pojednáním k disertačním práce se také skládá z tematických okruhů týkajících se povinných a povinně volitelných předmětů.
K obhajobě disertační práce se student hlásí po vykonání státní doktorské zkoušky a po splnění podmínek pro ukončení, jakými jsou účast na výuce, vědecká a odborná činnost (tvůrčí činnost), a minimálně měsíční studijní nebo pracovní stáž na zahraniční instituci anebo účasti na mezinárodním tvůrčím projektu.

Vytváření studijních plánů

Studium doktoranda probíhá podle individuálního studijního plánu (dále jen ISP), který zpracuje v úvodu studia školitel doktoranda ve spolupráci s doktorandem. Individuální studijní plán je pro doktoranda závazný. Jsou v něm specifikovány všechny povinnosti stanovené v souladu se Studijním a zkušebním řádem VUT, které musí doktorand k úspěšnému ukončení studia splnit. Tyto povinnosti jsou časově rozvrženy do celého období studia, jsou bodově ohodnoceny a v pevně daných termínech probíhá kontrola jejich plnění. Průběžné bodové hodnocení všech aktivit doktoranda je vedeno v dokumentu „Celkové bodové hodnocení doktoranda“ a je součástí ISP. Při zahájení dalšího roku studia pak školitel do ISP zaznamená případné změny. Nejpozději do 15. 10. každého roku studia odevzdává doktorand vytištěný a podepsaný ISP na vědeckém oddělení fakulty ke kontrole a založení.
Během prvních čtyř semestrů skládá doktorand zkoušky z povinných, povinně volitelných anebo volitelných předmětů pro splnění bodových limitů ze Studijní oblasti, a současně se intenzivně zabývá vlastním studiem a analýzou poznatků v oboru stanoveném tématem disertační práce a průběžným publikováním takto získaných poznatků a vlastních výsledků. V dalších semestrech se doktorand již více soustřeďuje na výzkum a vývoj, který souvisí s tématem disertační práce, na publikování výsledků své tvůrčí práce a na vlastní zpracování disertační práce.
Do konce druhého roku studia skládá doktorand státní doktorskou zkoušku, kterou prokazuje široký rozhled a hluboké znalosti v oboru, souvisejícím s tématem disertační práce. K této zkoušce se musí přihlásit nejpozději do 30. dubna ve druhém roce svého studia. Státní doktorské zkoušce předchází zkouška z anglického jazyka.
Ve třetím a čtvrtém roce svého studia provádí doktorand potřebnou výzkumnou činnost, publikuje dosažené výsledky a zpracovává svoji disertační práci. Součástí studijních povinností v doktorském studijním programu je absolvování části studia na zahraniční instituci nebo účast na mezinárodním tvůrčím projektu s výsledky publikovanými nebo prezentovanými v zahraničí nebo jiná forma přímé účasti studenta na mezinárodní spolupráci, což je nutné doložit nejpozději při odevzdání disertační práce.
Doktorandi ve čtvrtém roce studia předkládají do konce zimního zkouškového období svému školiteli rozpracovanou disertační práci, který ji ohodnotí. Disertační práci doktorand odevzdává do konce 4. roku studia.
Student prezenční formy doktorského studia je v průběhu studia povinen absolvovat pedagogickou praxi, tj. působit v procesu výuky. Zapojení doktoranda do pedagogické činnosti je součástí jeho vědecké přípravy. Pedagogickou praxí doktorand získává zkušenosti v předávání poznatků a zdokonaluje prezentační dovednosti. Skladbu pedagogických aktivit (cvičení, laboratorní cvičení, vedení projektů apod.) určí doktorandovi vedoucí daného ústavu po dohodě se školitelem. Povinnost pedagogické praxe se nevztahuje na doktorandy-samoplátce a na doktorandy v kombinované formě studia. Zapojení do výuky v rámci pedagogické praxe potvrdí po jejím splnění školitel v IS VUT.

Vypsaná témata doktorského studijního programu

  1. Detekce a lokalizace poruch v aktivních distribučních sítích s využitím měření synchronních fázorů

    Masivní rozvoj rozptýlené výroby elektrické energie přináší potřebu transformace systémů chránění tak, aby byly respektovány požadavky na bezpečnost a spolehlivost provozu sítí pro velké množství možností zapojení sítě včetně ostrovních provozů s různými velikostmi dostupného zkratového výkonu. Cílem práce je analýza možností využití měření synchronních fázorů pro adaptibilní chránění aktivních distribučních sítí. Součástí doktorského studia bude stáž na zahraničním výzkumném pracovišti.

    Školitel: Toman Petr, prof. Ing., Ph.D.

  2. Elektrické stroje odolné proti poruchám

    Téma je zaměřeno na výzkum a vývoj elektrických strojů s vysokou odolností proti poruchám. Může zahrnovat zdvojené třífázové systémy i pěti a vícefázové systémy. Předpokládaná aplikace je v oblasti letectví s výkonem stroje do 100 kW. V rámci doktorského studia student absolvuje stáž na zahraniční univerzitě v minimální délce jednoho měsíce.

    Školitel: Vítek Ondřej, doc. Ing., Ph.D.

  3. Nabíjecí stanice pro elektromobily jako prvek elektrizační soustavy

    V souvislosti se současným postupným rozvojem hybridních automobilů a elektromobilů (EVs) se stále naléhavěji ukazuje potřeba rozvoje nabíjecích stanic pro tento typ dopravy. Téma je zaměřeno na návrh a energetickou analýzu konceptu nabíjecí stanice s integrovanou akumulací a s podporou obnovitelného zdroje energie. Na základě navržené koncepce budou sestaveny matematické modely jednotlivých částí systému a bude provedena energeticko-ekonomická analýza s cílem ověřit možnost využití takto koncipované sestavy pro snížení zátěže sítě v odběrném místě. Předpokládá se přímá možnost spolupráce na konkrétním řešení s energetickou společností. Součástí doktorského studia bude stáž na zahraničním výzkumném pracovišti.

    Školitel: Mastný Petr, doc. Ing., Ph.D.

  4. Ostrovní provoz sítí s distribuovanými zdroji

    S množstvím zdrojů distribuovaných v distribučních sítích (DS) vzniká nově i možnost přechodu části DS do ostrovního provozu (OP), což může být chápáno mimo jiné i jako cesta ke zvyšování spolehlivosti dodávky ve vymezené části DS. Kromě jistě nesporných benefitů, je to však spojeno s řadou technických výzev, zahrnujících především vymezení oblasti, která bude splňovat podmínky pro úspěšný přechod do OP, správnou a spolehlivou detekci stavu pro přechod do OP a zpět, vymezení strategie řízení zdrojů (spotřebičů) pro zajištění stabilního chodu oblasti s odpovídající kvalitou elektrické energie, atp. Je ale třeba vzít v úvahu i bezprostředně spjatá témata související s bezpečností a legislativním rámcem, který provoz DS upravuje. Práce je zaměřena především na technickou realizovatelnost a tedy vytvoření a ověření komplexního konceptu. Předpokládaná spolupráce s provozovateli DS a mezinárodní vědecká spolupráce. Součástí doktorského studia je stáž na zahraničním výzkumném pracovišti, například na Università degli Studi della Campania "Luigi Vanvitelli". Informace: drapela@feec.vutbr.cz.

    Školitel: Drápela Jiří, prof. Ing., Ph.D.

  5. Pokročilé testování systémů chránění s využitím real-time simulátoru

    Nové technologie pro výzkum chování elektrických sítí při přechodných jevech umožňují pokročilou analýzu působení rozsáhlých systémů chránění při poruchách. Cílem práce je rozšíření možností real-time simulátoru RTDS pro realizaci simultánních testů v reálném čase. Součástí doktorského studia bude stáž na zahraničním výzkumném pracovišti.

    Školitel: Toman Petr, prof. Ing., Ph.D.

  6. Regulace napětí v distribučních sítích s vysokým podílem stochastických zdrojů

    Stále rostoucí podíl stochastických zdrojů v sítích má vliv na stabilitu napětí v průběhu dne. V důsledku proměnlivé dodávky výkonu do elektrizační soustavy z těchto zdrojů dochází ke kolísání odchylek napětí v průběhu denního diagramu. Současné prostředky používané k regulaci napětí v některých případech nedokáží zajistit požadovanou úroveň napětí ve všech odběrných místech sítě. Cílem práce je zmapovat nové možnosti a prostředky pro regulaci napětí v distribuční soustavě a navrhnout koncepci této regulace s ohledem na současný vývoj zdrojové základny. Součástí doktorského studia bude stáž na zahraničním výzkumném pracovišti.

    Školitel: Mastný Petr, doc. Ing., Ph.D.

  7. Rušení šířená po vedení výkonových sítí v audio pásmu

    Zvyšující se počty polovodičových měničů v distribučních sítích, na straně spotřebičů i v podobě střídačů fotovoltaických zdrojů, vedou ke vzniku a zvyšování úrovně vysoko-frekvenčních rušení šířených po vedení, které mají původ ve spínacích procesech měničů. Výsledkem jsou spínací rušení projevující se především ve frekvenčním pásmu 2-150 kHz, které je také označované jako audio pásmo. Současné zkušenosti s interferencí ukazují, že takové rušení může způsobit dysfunkci snímacích, měřících a řídících systémů, připojených do sítě, s vážnými důsledky. Jelikož se jedná o poměrně novou oblast zájmu, neexistuje dostatečný přehled o charakteru, úrovních, a výskytu diferenciálních rušení v distribučních sítích. Výsledky měření, které byly do současnosti publikovány, jsou pro přehled o stavu nedostatečné a mnohdy neporovnatelné. V této frekvenční oblasti se setkávají dva základní přístupy/metodiky měření využívané na jedné straně pro měření ukazatelů PQ a na straně druhé pro měření úrovní VF rušení, jejichž výsledky jsou navzájem nesouměřitelné. S tím souvisí i značná mezera v koordinaci EMC a související standardizaci. Práce je zaměřená na vývoj odpovídající měřící techniky a procedury pro monitorování inkriminovaného rušení v distribučních sítích. Dále je cílem studium vzniku a šíření daného rušení a v neposlední řadě návrh konceptu koordinace EMC. Předpokládaná spolupráce s provozovateli DS a mezinárodní vědecká spolupráce. Součástí doktorského studia je stáž na zahraničním výzkumném pracovišti, například na TU Dresden, DE. Informace: drapela@feec.vutbr.cz.

    Školitel: Drápela Jiří, prof. Ing., Ph.D.

  8. Systém pro řízení kvality a toků elektrické a tepelné energie v budovách s obnovitelnými zdroji energie – demand side management

    Zhodnoťte současné možnosti (celosvětově) řízení a monitoringu energetických systémů budov s obnovitelnými zdroji energie. Navrhněte a vytvořte jednotný systém regulace a řízení, který bude zahrnovat tepelné čerpadlo, solární termický kolektor a hybridní energetický systém s akumulací (fotovoltaika, větrná turbína) tak, aby bylo dosaženo maximální možné interakce mezi jednotlivými zdroji a zařízeními s ohledem na okolní vlivy. Výchozím předpokladem navrženého systému je koncepce založená na využití PLC. Součástí doktorského studia bude stáž na zahraničním výzkumném pracovišti.

    Školitel: Mastný Petr, doc. Ing., Ph.D.

  9. Využití akumulace pro podporu chodu elektrizační soustavy

    S výrobou elektrické energie z obnovitelných zdrojů (především z větrných a fotovoltaických elektráren) je úzce spojen pojem stabilita dodávky elektrické energie. Výzkum bude zaměřen na možnosti akumulace elektrické energie vyrobené z obnovitelných zdrojů pomocí moderních technologií, se zaměřením na využití vodíku (VRB systémy), akumulátory na bázi Lithia a přečerpávacích vodních elektráren pro její akumulaci. Výsledkem práce bude návrh opatření v energetické soustavě, který bude řešit časovou disproporci mezi dodávkou a odběrem elektrické energie z obnovitelných zdrojů. Řešení je spojeno s modelováním (Matlab) na PC a experimentálním měřením na funkčním modelu. Součástí doktorského studia bude stáž na zahraničním výzkumném pracovišti.

    Školitel: Mastný Petr, doc. Ing., Ph.D.

  10. Využití tarifních měřidel s rozšířenou funkcí pro řízení a automatizaci distribučních soustav

    Hlavní funkcí elektroměrů je měřit elektrickou energii v definovaném místě elektrické sítě. Kromě toho však mohou elektroměry plnit řadu dalších funkcí. Například mohou být využity pro měření dalších elektrických veličin vypovídajících o stavu elektrické sítě a následně použitelných, v rámci konceptu Smart Grids, pro její řízení. Cílem je definovat potřebné funkce měřidel a jejich začlenění do jednotlivých bezpečnostně-technických vrstev řízení distribučních sítí. Dále optimalizovat měřící funkce a koncentraci dat pro jednotlivé úlohy. Téma je součástí řešení výzkumného úkolu. Předpokládaná spolupráce s provozovateli DS a mezinárodní vědecká spolupráce. Součástí doktorského studia je stáž na zahraničním výzkumném pracovišti, například na TU Dresden, DE. Informace: drapela@feec.vutbr.cz.

    Školitel: Drápela Jiří, prof. Ing., Ph.D.

  11. Vývoj inovativních funkcionalit použitelných při postupném zavádění inteligentních distribučních sítí využívající vybraná data z elektroměrů

    Hlavním cílem práce je vývoj praktických funkcionalit využívající data z chytrých elektroměrů. Funkcionality jednak umožní posouzení aktuálního stavu rozsáhlé a různorodé sítě nízkého napětí, ale současně budou mít zejména prokazatelný pozitivní a inovativní dopad na technicky smysluplný rozvoj Smart grids. Součástí doktorského studia bude stáž na zahraničním výzkumném pracovišti.

    Školitel: Toman Petr, prof. Ing., Ph.D.

  12. Vývoj metodiky pro certifikaci výrobních modulů se střídači

    • rozbor souvisejících předpisů a norem s požadavky na vlastnosti a funkce výrobních modulů, • definice postupů a specifikací parametrů pro provádění certifikačních/ověřovacích zkoušek včetně možností virtuálního testování, • specifikace a návrh hardwarových požadavků na invertory pro realizaci hardware-in-loop testování v provozních podmínkách • tvorba metodiky pro zpracování a vyhodnocení provozních dat výrobních modulů/zařízení, • implementace navržených postupů a metodik do certifikačních procesů v ČR, včetně řešení systému pro automatizaci prováděných zkoušek

    Školitel: Morávek Jan, Ing., Ph.D.

1. kolo (podání přihlášek od 01.04.2021 do 15.05.2021)

  1. Kooperace AC/AC čtyř-kvadrantové měničové trakční stanice s distribuční soustavou

    Nové koncepce napájení AC trakční soustavy ze soustavy distribuční s využitím čtyř- kvadrantových polovodičových měničů je pro distribuční soustavy výzvou i příležitostí. Cílem práce je navrhnout a ověřit integraci AC/AC čtyř-kvadrantových měničových trakčních stanic s možností rekuperace energie a identifikovat, navrhnout a ověřit rozsah možné podpory provozu distribuční soustavy jalovým výkonem. Předpokládaná je spolupráce s provozovateli DS, dodavateli technologií (ABB), projektantem (SUDOP) a mezinárodní vědecká spolupráce. Součástí doktorského studia je stáž na zahraničním výzkumném pracovišti, například na University of Campania, IT. Informace: drapela@feec.vutbr.cz.

    Školitel: Drápela Jiří, prof. Ing., Ph.D.

  2. Pravděpodobnosti reakcí, účinné průřezy, výtěžky štěpných a spalačních reakcí a nejistoty jaderných dat pro urychlovačem řízené podkritické jaderné reaktory

    Urychlovačem řízené zdroje neutronů jsou aktuální nejintenzivnější neutronové zdroje na světě. Díky tomu je možné projektovat podkritické jaderné reaktory s externím zdrojem ve formě urychlovače částic (spalační nebo jiný zdroj). V takovém reaktoru bude vysoká hustota toku neutronů velmi vysokých středních energií, což umožní efektivně transmutovat transurany, včetně nejproblematičtějších štěpných produktů. Dizertační práce se bude zaměřovat na problematiku jaderných dat pro tyto systémy. Předpokládá se spolupráce se zahraničními institucemi (JINR, MSU, RGU, IMP, YSU, UzhNU).

    Školitel: Katovský Karel, doc. Ing., Ph.D.

  3. Techniky ověřování souladu výroben elektřiny s požadavky Nařízení EU

    Ověřování souladu výroben elektřiny s požadavky je předmětem Nařízení Komise (EU) 2016/631, kterým se stanoví kodex sítě pro požadavky na připojení výroben k elektrizační soustavě (NC RfG), a navazujících národních implementací požadavků, což jsou v případě ČR Pravidla provozování distribuční soustavy (PPDS) - Příloha č. 4: Pravidla pro paralelní provoz výroben a akumulačních zařízení se sítí provozovatele distribuční soustavy (PPDS P4). Zatímco národní implementaci požadavků lze považovat za úspěšnou, zavedení procesů ověřování a prokazování souladu výroben s požadavky není stále dokončeno. Současný způsob ověřování a prokazování souladu vykazuje zásadní nedostatky, v jejichž důsledku závažné procento současně připojovaných výroben tyto minimální požadavky fakticky neplní. Původ stavu lze identifikovat především v neúplnosti specifikace procesního rámce prokazování souladu a v absenci řešení pro samotné ověřování, která jsou v současné době ve stádiu vývoje. Cílem je nezbytný vývoj a vymezení/určení podpůrných certifikovaných technik a metodik pro ověřování souladu výrobních zařízení a modulů/výroben a jejich monitoring (průběžné ověřování trvání souladu) testováním a měřením v laboratorních i provozních podmínkách. V souhrnu je cíleno na procesy, postupy a prostředky pro dosažení úspěšné integrace nízko/bez-emisních zdrojů, v souladu s bezproblémovým, spolehlivým a bezpečným provozem elektrizační soustavy. Předpokládaná spolupráce s provozovateli DS a mezinárodní vědecká spolupráce (Německo, Itálie). Informace: drapela@feec.vutbr.cz.

    Školitel: Drápela Jiří, prof. Ing., Ph.D.

Struktura předmětů s uvedením ECTS kreditů (studijní plán)

Libovolný ročník, zimní semestr
ZkratkaNázevJ.Kr.Pov.Uk.Hod. rozsahSk.Ot.
DPA-ET1Electrotechnical Materials, Material Systems and Production Processesen4Povinně volitelnýdrzkK - 39 / S - 39ano
DPA-FY1Junctions and Nanostructuresen4Povinně volitelnýdrzkK - 39 / S - 39ano
DPA-EE1Mathematical Modelling of Electrical Power Systemsen, cs4Povinně volitelnýdrzkK - 39 / S - 39ano
DPA-RE1Modern Electronic Circuit Designen4Povinně volitelnýdrzkK - 39 / S - 39ano
DPA-ME1Modern Microelectronic Systemsen4Povinně volitelnýdrzkK - 39 / S - 39ano
DPA-TK1Optimization Methods and Queuing Theoryen4Povinně volitelnýdrzkK - 39 / S - 39ano
DPA-AM1Selected Chaps From Automatic Controlen4Povinně volitelnýdrzkK - 39 / S - 39ano
DPA-VE1Selected Problems From Power Electronics and Electrical Drivesen4Povinně volitelnýdrzkK - 39 / S - 39ano
DPA-TE1Special Measurement Methodsen4Povinně volitelnýdrzkK - 39 / S - 39ano
DPA-MA1Statistics, Stochastic Processes, Operations Researchen4Povinně volitelnýdrzkK - 39 / S - 39ano
DPX-JA6Angličtina pro doktorandyen4VolitelnýdrzkCj - 26ano
DPA-EIZScientific Publishing A to Zen2VolitelnýdrzkS - 26ano
DPA-RIZSolving of Innovative Tasksen2VolitelnýdrzkK - 39 / S - 39ano
Libovolný ročník, letní semestr
ZkratkaNázevJ.Kr.Pov.Uk.Hod. rozsahSk.Ot.
DPA-TK2Applied Cryptographyen4Povinně volitelnýdrzkK - 39 / S - 39ano
DPA-MA2Discrete Processes in Electrical Engineeringen4Povinně volitelnýdrzkK - 39 / S - 39ano
DPA-ME2Microelectronic Technologiesen4Povinně volitelnýdrzkK - 39 / S - 39ano
DPA-RE2Modern Digital Wireless Communicationen4Povinně volitelnýdrzkK - 39 / S - 39ano
DPA-EE2New Trends and Technologies in Power System Generationen4Povinně volitelnýdrzkK - 39 / S - 39ano
DPA-TE2Numerical Computations with Partial Differential Equationsen4Povinně volitelnýdrzkK - 39 / S - 39ano
DPA-ET2Selected Diagnostic Methods, Reliability and Qualityen4Povinně volitelnýdrzkK - 39 / S - 39ano
DPA-AM2Selected Chaps From Measuring Techniquesen4Povinně volitelnýdrzkK - 39 / S - 39ano
DPA-FY2Spectroscopic Methods for Non-Destructive Diagnosticsen4Povinně volitelnýdrzkK - 39 / S - 39ano
DPA-VE2Topical Issues of Electrical Machines and Apparatusen4Povinně volitelnýdrzkK - 39 / S - 39ano
DPX-JA6Angličtina pro doktorandyen4VolitelnýdrzkCj - 26ano
DPA-CVPQuotations in a Research Worken2VolitelnýdrzkP - 26ano
DPA-RIZSolving of Innovative Tasksen2VolitelnýdrzkK - 39 / S - 39ano
Libovolný ročník, celoroční semestr
ZkratkaNázevJ.Kr.Pov.Uk.Hod. rozsahSk.Ot.
DPX-QJAZkouška z angličtiny před státní doktorskou zkouškuen4VolitelnýdrzkK - 3ano