studijní program

Teleinformatika

Fakulta: FEKTZkratka: DPC-TLIAk. rok: 2022/2023

Typ studijního programu: doktorský

Kód studijního programu: P0714D060011

Udělovaný akademický titul: Ph.D.

Jazyk výuky: čeština

Akreditace: 28.5.2019 - 27.5.2029

Forma studia

Prezenční studium

Standardní doba studia

4 roky

Garant programu

Oborová rada

Oblasti vzdělávání

Oblast Téma Podíl [%]
Elektrotechnika Bez tematického okruhu 100

Cíle studia

Doktorand se naučí tvůrčím způsobem využívat teoretické znalosti získané jak studiem vybraných kurzů, tak vlastní tvůrčí činností. Tyto poznatky je schopni efektivně využití při následném návrhu vlastních a inovátorských řešení v rámci dalšího experimentálního vývoje a aplikačního výzkumu. Důraz je tak kladen na získání jak teoretických, tak i praktických dovedností, dále samostatnost v rozhodování, formulování vědecko-výzkumných hypotéz pro přípravu projektů základního až aplikovaného výzkumu, schopnost hodnocení výsledků a jejich prezentace ve formě vědeckých textů a prezentací před vědeckou komunitou.

Profil absolventa

Doktorský studijní program "Teleinformatika" je zaměřen na přípravu špičkových vědeckých a výzkumných specialistů, kteří budou mít hluboké znalosti principů a technik využívaných v komunikačních a datových drátových i bezdrátových sítích a s tím souvisejících oblastí jako je i vlastní sběr, zpracování a zpětná reprezentace užitečných uživatelských dat na úrovni aplikační vrstvy. Hlavní části studia tvoří oblasti teoretické informatiky a komunikační techniky. Absolvent má široké znalosti komunikačních a informačních technologií, datových přenosů a jejich zabezpečení. Absolvent se orientuje v operačních systémech, počítačových jazycích a databázových systémech, jejich užití včetně návrhu vhodného software a uživatelských aplikací. Je schopen navrhovat nová technologická řešení komunikačních zařízení a informačních systémů určených pro pokročilý přenos informací.

Charakteristika profesí

Absolventi programu "Teleinformatika" se uplatňují zejména ve výzkumných, vývojových a projekčních týmech, v oblasti odborné činnosti ve výrobních nebo obchodních organizacích, v akademické sféře a v dalších institucích zabývajících se vědou, výzkumem, vývojem a inovacemi, ve všech oblastech společnosti, kde dochází k aplikaci a využití komunikačních systémů a přenosu informace datovými sítěmi.
Uplatnění naši absolventi nalézají zejména při analýze, návrhu, tvorbě nebo správě komplexních systémů pro přenos a zpracování dat, a také při programování, integraci, podpoře, údržbě nebo prodeji těchto systémů.

Podmínky splnění

Studium doktoranda probíhá podle individuálního studijního plánu, který zpracuje v úvodu studia školitel doktoranda ve spolupráci s doktorandem. V individuálním studijním plánu jsou specifikovány všechny povinnosti stanovené v souladu se Studijním a zkušebním řádem VUT, které musí doktorand k úspěšnému ukončení studia splnit. Tyto povinnosti jsou časově rozvrženy do celého období studia, jsou bodově ohodnoceny a v pevně daných termínech probíhá kontrola jejich plnění. Student si zapíše a vykoná zkoušky z povinných předmětů, minimálně dvou povinně volitelných předmětů ohledem na zaměření jeho disertační práce, a dále minimálně dvou volitelných předmětů (Angličtina pro doktorandy, Řešení inovačních zadání, Vědecké publikování od A do Z).
Ke státní doktorské zkoušce se může student přihlásit až po vykonání všech zkoušek předepsaných jeho individuálním studijním plánem. Před státní doktorskou zkouškou student vypracuje pojednání k disertační práci, v němž detailně popíše cíle práce, důkladné zhodnocení stavu poznání v oblasti řešené disertace, charakteristiku metod, které hodlá při řešení uplatňovat. Obhajoba pojednání, které je oponováno, je součástí státní doktorské zkoušky. V další části zkoušky musí student prokázat hluboké teoretické i praktické znalosti v oblasti mikroelektroniky, elektrotechnologie, fyziky materiálů, nanotechnologií, elektrotechniky, elektroniky, teorie obvodů. Státní doktorská zkouška probíhá ústní formou a kromě diskuze nad pojednáním k disertační práci se také skládá z tematických okruhů týkajících se povinných a povinně volitelných předmětů.
K obhajobě disertační práce se student hlásí po vykonání státní doktorské zkoušky a po splnění podmínek pro ukončení, jakými jsou účast na výuce, vědecká a odborná činnost (tvůrčí činnost), a minimálně měsíční studijní nebo pracovní stáž na zahraniční instituci anebo účasti na mezinárodním tvůrčím projektu.

Vytváření studijních plánů

Studium doktoranda probíhá podle individuálního studijního plánu (dále jen ISP), který zpracuje v úvodu studia školitel doktoranda ve spolupráci s doktorandem. Individuální studijní plán je pro doktoranda závazný. Jsou v něm specifikovány všechny povinnosti stanovené v souladu se Studijním a zkušebním řádem VUT, které musí doktorand k úspěšnému ukončení studia splnit. Tyto povinnosti jsou časově rozvrženy do celého období studia, jsou bodově ohodnoceny a v pevně daných termínech probíhá kontrola jejich plnění. Průběžné bodové hodnocení všech aktivit doktoranda je vedeno v dokumentu „Celkové bodové hodnocení doktoranda“ a je součástí ISP. Při zahájení dalšího roku studia pak školitel do ISP zaznamená případné změny. Nejpozději do 15. 10. každého roku studia odevzdává doktorand vytištěný a podepsaný ISP na vědeckém oddělení fakulty ke kontrole a založení.
Během prvních čtyř semestrů skládá doktorand zkoušky z povinných, povinně volitelných anebo volitelných předmětů pro splnění bodových limitů ze Studijní oblasti, a současně se intenzivně zabývá vlastním studiem a analýzou poznatků v oboru stanoveném tématem disertační práce a průběžným publikováním takto získaných poznatků a vlastních výsledků. V dalších semestrech se doktorand již více soustřeďuje na výzkum a vývoj, který souvisí s tématem disertační práce, na publikování výsledků své tvůrčí práce a na vlastní zpracování disertační práce.
Do konce druhého roku studia skládá doktorand státní doktorskou zkoušku, kterou prokazuje široký rozhled a hluboké znalosti v oboru, souvisejícím s tématem disertační práce. K této zkoušce se musí přihlásit nejpozději do 30. dubna ve druhém roce svého studia. Státní doktorské zkoušce předchází zkouška z anglického jazyka.
Ve třetím a čtvrtém roce svého studia provádí doktorand potřebnou výzkumnou činnost, publikuje dosažené výsledky a zpracovává svoji disertační práci. Součástí studijních povinností v doktorském studijním programu je absolvování části studia na zahraniční instituci nebo účast na mezinárodním tvůrčím projektu s výsledky publikovanými nebo prezentovanými v zahraničí nebo jiná forma přímé účasti studenta na mezinárodní spolupráci, což je nutné doložit nejpozději při odevzdání disertační práce.
Doktorandi ve čtvrtém roce studia předkládají do konce zimního zkouškového období svému školiteli rozpracovanou disertační práci, který ji ohodnotí. Disertační práci doktorand odevzdává do konce 4. roku studia.
Student prezenční formy doktorského studia je v průběhu studia povinen absolvovat pedagogickou praxi, tj. působit v procesu výuky. Zapojení doktoranda do pedagogické činnosti je součástí jeho vědecké přípravy. Pedagogickou praxí doktorand získává zkušenosti v předávání poznatků a zdokonaluje prezentační dovednosti. Skladbu pedagogických aktivit (cvičení, laboratorní cvičení, vedení projektů apod.) určí doktorandovi vedoucí daného ústavu po dohodě se školitelem. Povinnost pedagogické praxe se nevztahuje na doktorandy-samoplátce a na doktorandy v kombinované formě studia. Zapojení do výuky v rámci pedagogické praxe potvrdí po jejím splnění školitel v IS VUT.

Vypsaná témata doktorského studijního programu

  1. Analogové obvody obsahující prvky neceločíselného řádu

    Práce je zaměřena na modelování, simulace a experimentální ověřování struktur, u nichž relace mezi odezvou a budicí veličinou obsahuje derivaci nebo integrál necelistvého řádu (tzv. fraktální struktury či obvody). Úkolem je dále návrh vhodných aplikačních možností obvodů fraktálního řádu, např. kmitočtových filtrů, rekonfigurovatelných filtrů, přeladitelných oscilátorů či dalších obvodů. Pozornost je třeba věnovat i dalším možným způsobům realizace fraktálních obvodů, např. využití struktur s rozprostřenými parametry (RC-EDP), počítačovému modelování přírodních a biologických látek a struktur a také matematickému popisu.

    Školitel: Jeřábek Jan, doc. Ing., Ph.D.

  2. Automatická hudební transkripce nahrávek na symbolický zápis

    Automatická hudební transkripce (AMT) je odvětví vědního oboru Music Information Retrieval (MIR), které kombinuje vytváření logických hudebních struktur, hudební analýzu a rozpoznávání hudebních objektů. AMT se soustředí na vývoj algoritmů, které mění reprezentaci hudebního signálu (ve formě digitálních nahrávek) na určitou formu symbolického zápisu a obsahuje množinu dalších specifických parametrů, jako například určení výšky tónů polyfonické struktury, začátků a konců tónů, rozeznání instrumentů, detekce rytmu a dob apod. Cílem disertační práce je návrh a implementace systému automatické hudební transkripce na symbolický zápis.

    Školitel: Smékal Zdeněk, prof. Ing., CSc.

  3. Bezpečnost a ochrana soukromí v inteligentních infrastrukturách

    Téma se orientuje na výzkum aplikované moderní kryptografie (lehká kryptografie, schémata s ochranou soukromí, autentizace a klíčový management) a optimalizaci schémat v rámci inteligentních sítí typu Internet všeho, Internet vozidel a chytrých měst. Výzkum se zaměří na návrh metod pro zabezpečení komunikace v decentralizovaných a heterogenních sítích a se zvýšenou ochranou soukromí uživatelů. Předpokládá se zapojení studenta do mezinárodních a národních výzkumných projektů.

    Školitel: Malina Lukáš, doc. Ing., Ph.D.

  4. Bezpečnost IP telefonie

    Práce bude věnována výzkum v oblasti bezpečnosti IP telefonie. Bude zahrnovat analýzu protokolů, zajišťujících internetovou telefonii VoIP, známých útoků, návrh a ověření nových útoků. Na základě analýz budou navrženy přístupy řešení eliminace či minimalizace vlivu zkoumaných útoků na VoIP provoz. Jednotlivé přístupy budou dále testovány v praktických realizacích.

    Školitel: Šilhavý Pavel, doc. Ing., Ph.D.

  5. Bezpečnost operačních systémů

    Vývoj operačních systémů reaguje na změny v oblasti kybernetické bezpečnosti. Téma je zaměřeno na analýzu různých operačních systémů z pohledu bezpečnosti, například na základě studia předchozích útoků. Cílem je návrh úpravy systémových služeb zvoleného operačního systému z pohledu předpokládaného nasazení.

    Školitel: Komosný Dan, prof. Ing., Ph.D.

  6. Bezpečnost optických vláknových infrastruktur

    Optické vláknové sítě se v posledních letech rapidně vyvíjely, aby uspokojily stále rostoucí poptávku po navyšující kapacitě. Optická vlákna jsou dnes široce používána ve všech typech sítí z důvodu nejen přenosových rychlostí, maximálního dosahu, ale i bezpečnosti. Přestože jsou optické vláknové sítě považovány za naprosto bezpečné, existují možnosti, jak část datového signálu zachytit nebo zkopírovat. Využívány mohou být jak nedokonalosti pasivních optických komponent, tak například monitorovací výstupy aktivních zařízení. S nástupem kvantových počítačů by současné šifrování mohlo být prolomeno. Je nutné se tedy zabývat bezpečností optických vláknových sítí, analyzovat bezpečnostní rizika a navrhnout vhodná protiopatření.

    Školitel: Münster Petr, doc. Ing., Ph.D.

  7. Efektivní využití IP sítí v krizových situacích

    Cílem je vytvořit efektivní strategii použití veřejných a neveřejných IP síti pro krizové řízení. Dále pak navrhnout takovou síť, která by dokázala kapacitně, ale také z hlediska odolnosti, zajistit krizovou komunikaci. Jednalo by se zejména o přenosy hlasu, dat, TV vysílání. Další částí by bylo navrhnout nové metody řízení komunikace po internetu - řídit toky informací atp. Výzkum by obsahoval také vliv topologie sítě na její stabilitu a bezpečnost, rychlost šíření virů, schopnost odolávat útokům atp. Jedním z cílů je navrhnout softwarového robota, který bude schopný monitorovat topologii sítě popřípadě internetu, dalším cílem je navrhnout systém pro výměnu souborů po internetu, ale bez jakéhokoli centrálního prvku. Systém by přitom měl být intuitivně použitelný. Řešení by mělo být bezpečné a umožnit anonymizovat odesilatele a příjemce dat. Finálním cílem je navrhnout vysoce odolnou síť vhodnou pro krizové situace a tento návrh podložit teorií.

    Školitel: Škorpil Vladislav, doc. Ing., CSc.

  8. Forenzní analýza operačních systémů

    Téma se zabývá forenzními metodami pro získání informací z úložných médií a z operační paměti (tzv. volatilní data). Současné metody budou aplikovány na příkladových studiích. Cílem je navrhnout postupy sběru dat, provést jejich automatizaci a ověřit jejich účinnost. V rámci tématu lze pracovat s různými typy zařízení a operačními systémy.

    Školitel: Komosný Dan, prof. Ing., Ph.D.

  9. Forenzní analýza síťové komunikace

    Téma se zabývá forenzními metodami pro získání informací z předešlé síťové komunikace, která je zachycena pomocí logů v komunikačních systémech. Současné metody budou aplikovány na příkladových studiích. Cílem je navrhnout postupy sběru dat, provést jejich automatizaci a ověřit jejich účinnost. V rámci tématu lze kombinovat záznamy komunikace na různých zařízeních, včetně senzorů.

    Školitel: Komosný Dan, prof. Ing., Ph.D.

  10. Kompresivní sledování pohyblivého cíle senzorovou sítí

    Práce se bude zabývat situací, kdy existuje ad-hoc síť agentů (např. senzorů), kteří spolupracují s cílem sledovat jeden nebo více pohyblivých cílů distribuovaným způsobem. Termín "distribuované" zde znamená, že neexistuje žádná centrální jednotka pro sběr a zpracování všech informací a měření, ale jsou to jen a pouze agenti, kteří jsou vzájemně schopni komunikovat. Bude využito faktu, že informace statistického charakteru vyměňované mezi agenty mají tzv. řídké rozdělení pravděpodobnosti. Cílem této disertační práce bude rozvíjet a studovat, jak tato řídkost umožní pokles komunikačních nároků a v důsledku např. zvýšení životnosti sítě. (Spolupráce s Technickou univerzitou ve Vídni, Prof. Franz Hlawatsch. Možnost cestování a stáží.)

    Školitel: Rajmic Pavel, prof. Mgr., Ph.D.

  11. LDPC kódy

    Práce bude věnována analýze stávajících systémů protichybového zabezpečení v přenosových systémech a návrhu alternativních přístupů protichybového zabezpečení s využitím LDPC (Low Density Parity Check) kódů. Cílem práce bude zejména uplatnění nových kódů a přístupů. Na základě analýz budou navrženy přístupy řešení realizace těchto systémů.

    Školitel: Šilhavý Pavel, doc. Ing., Ph.D.

  12. Metody pro měření základních i odvozených parametrů datových sítí

    Cílem této práce je výzkum v oblasti měření základních parametrů datových sítí založených především na Internet protokolu (IP), jako jsou propustnost vyhodnocovaná na různých ISO/OSI modelu, jednosměrné a obousměrné zpoždění a také v oblasti složených parametrů, jako jsou např. kvalita hlasových a video služeb. To souvisí s problematikou modelování chování sítí a uživatelů v různých situacích, dlouhodobými i krátkodobými jevy, popisem systémů hromadné obsluhy, a také vlastnostmi a chováním stěžejních internetových a měřících protokolů v počítačových sítích, stejně tak jako problematikou jejich možného nastavení a bezpečnosti. Na základě analýzy dostupných nástrojů a jejich vlastností, popř. vývoje nástrojů vlastních, je očekáván návrh řešení a přístupů pro lišících se podle typu měření. Cílem je následně navržené postupy ověřit v laboratorních podmínkách i v prostředí reálných sítí.

    Školitel: Jeřábek Jan, doc. Ing., Ph.D.

  13. Metody pro optimalizaci ultraširokopásmových analogových integrovaných systémů na čipu s využitím parazitních jevů tranzistorů

    Disertační práce je zaměřena na výzkum optimalizačních metod ultraširokopásmových analogových systémů libovolného celistvého a neceločíselného řádu na tranzistorové úrovni integrovaných na čipu. Cílem práce je s využitím parazitních jevů tranzistorů navrhnout nová obvodová řešení s nízkým napájecím napětím a s malou spotřebou pracující v kmitočtové oblasti jednotek GHz. Vybraná nová obvodová řešení časových zpoždění, oscilátorů, kmitočtových filtrů druhého nebo vyššího řádu, simulátorů syntetických induktorů, atd. s potenciálem na využití v 6G komunikačních systémech budou realizovány na čipu a ověřeny experimentálním měřením.

    Školitel: Herencsár Norbert, doc. Ing., Ph.D.

  14. Metody pro testování odolnosti proti kybernetickým útokům

    Téma je zaměřeno na výzkum a návrh nových metod, které lze použít při bezpečnostním testování proti odolnosti kybernetickým útokům. Výzkum je cílem na metody použitelné při penetračním testování webových aplikací, síťové infrastruktury, ale také penetračních testech specializovaných zařízení jako je například inteligentní elektroměr popřípadě Internet věcí. Předpokládá se zapojení studenta do výzkumných projektů Ústavu.

    Školitel: Martinásek Zdeněk, doc. Ing., Ph.D.

  15. Metody protiopatření eliminující útoky postranními kanály

    Téma je zaměřeno na výzkum útoků postranními kanály. Tyto útoky cílí na implementace dnes běžně plouživých a bezpečných kryptografických algoritmů. Hlavním cílem je výzkum a návrh ochranných opatření, které mohou být použity k eliminaci těchto útoků. Předpokládá se výzkum moderních metod skrývání a maskování. Předpokládá se zapojení studenta do výzkumných projektů Ústavu.

    Školitel: Martinásek Zdeněk, doc. Ing., Ph.D.

  16. Moderní optické vláknové přenosové systémy

    Optické přenosové systémy se velmi rychle vyvíjí, aby uspokojily stále rostoucí požadavky uživatelů. Kromě datových přenosů se objevují i nové přenosy jako přesný čas, stabilní frekvence, radio over fiber, kvantové přnosy, apod. Jednotlivé typy signálů mají rozdílné požadavky na přenosovou infrastrukturu. Vlnové multiplexování je dnes široce používáno pro navýšení kapacity optických vláken, nicméně je nutné se zabývat otázkou možného vzájemného rušení. Aby bylo možné splnit požadavky na budoucí přenosové systémy, je nutné se zabývat několika technickými výzvami, jako jsou nové optické modulační formáty s vysokou spektrální účinností, zmírnění lineárních a nelineárních jevů v optických vláknech, nebo zesílení signálu s minimálním šumem.

    Školitel: Münster Petr, doc. Ing., Ph.D.

  17. Možnosti odposlechu řečových signálů pomocí optických vláken

    Je známo, že akustické vlnění může být zachyceno optickým vláknem, které je tomuto vlnění vystaveno. Úkolem doktoranda by byl výzkum metod odposlechu řečových signálů, zkoumání možností a limitů a v neposlední řadě zpracování zachycených sigálů, jejich odrušování a analýza.

    Školitel: Rajmic Pavel, prof. Mgr., Ph.D.

  18. Návrh moderních IP sofistikovaných telematických systémů v dopravě

    Telematické systémy jsou obvyklé zejména v dopravě. Výzkum telematických systémů založených na Internet protokolu bude směřovat k návrhu sofistikovaných, tedy promyšlených, formálně propracovaných a složitých metod využívajících IP systémů v různých oblastech. Předpokládají se zejména sledovací systémy, zabezpečovací systémy, systémy placení jízdného a dalších poplatků, informační systémy, interaktivní aplikace apod. Pozornost se zaměřuje na lokalizaci pomocí GPS, diagnostiku vozidel, sledování vozidel v orthomapách v reálné situaci apod. Sofistikované telematické systémy budou softwarově simulovány, optimalizovány a následně prakticky realizovány ve formě funkčních vzorků. Předpokládá se komunikace dvou automobilů bez účasti řidiče, předcházení kolizím, předávání informací o dopravě z míst, odkud automobily vyjížděly. Uvažován bude velmi přesný navigační systém založený na systému Galileo (GNSS) pro ovládání funkčních bloků automobilů (řízení).

    Školitel: Škorpil Vladislav, doc. Ing., CSc.

  19. Objektivní metriky odhadu subjektivního hodnocení poslechové kvality u poškozených signálů

    Většina dnešních objektivních metrik kvality audiosignálu se zaměřuje na hodnocení kvality komprese. V praxi je však potřebné odhadovat i očekávané subjektivní hodocení jinak poškozených audiosignálů (clipping, distortion, výpadky apod.). Student by se zabýval úpravou stávajících metrik typu jako jsou PEAQ, PEMO-Q nebo VisQOLAudio pro tyto nelineární degradace. Předpokládá se také práce s metodami hlubokého učení. Školitel-specialista: Jiří Schimmel (ÚTKO FEKT), spolupráce také s dr. Františkem Rundem (ČVUT).

    Školitel: Rajmic Pavel, prof. Mgr., Ph.D.

  20. Operační systémy reálného času

    Systémy reálného času vyhodnocují v pravidelných intervalech vstupní veličiny a do určitého času reagují na danou událost. Vývoj v této oblasti je směřován k zajištění časových garancí při respektování hardwarové výbavy a dostupného software. Cílem studia je analyzovat požadavky na tyto systémy a navrhnout zajištění časových garancí pro zvolené aplikační použití.

    Školitel: Komosný Dan, prof. Ing., Ph.D.

  21. Optimalizace PI/PD/PID regulátorů pomocí akumulačních prvků neceločíselného řádu

    Disertační práce bude věnována problematice modelovaní a řízení reálních procesů pomocí fraktálního kalkulu. Výzkum bude zaměřen na nové aproximační metody akumulačních prvků libovolného neceločíselného řádu. Cílem práce dále je s využitím dosavadních poznatků navrhnout řadu původních řešení emulátorů kondenzátoru a cívky libovolného neceločíselného řádu zejména pro optimalizaci parametrů a implementaci PID regulátorů s potenciálem na využití v průmyslu. Vybraná nová obvodová řešení emulátorů akumulačních prvků libovolného neceločíselného řádu a analogových proporčně-integračních/proporčně-derivačních/proporčně-integračně-derivačních (PI/PD/PID) regulátorů budou realizovány na čipu. Kvalita regulátorů bude hodnocena zejména na základě robustnosti a stability v simulačním prostředí Matlab/Simulink či experimentálním měřením.

    Školitel: Herencsár Norbert, doc. Ing., Ph.D.

  22. Optimalizace 3D lokalizačních algoritmů pro bezdrátové senzorové sítě

    Bezdrátové senzorové sítě složí primárně ke shromažďování dat. V některých aplikacích je ale potřeba zároveň získávat přesnou polohu bezdrátového uzlu. Tato problematika se stává velmi aktuální ve spojení s roji dronů a jejich řízením. Cílem práce bude analýza a optimalizace 3D lokalizačních algoritmů a jejich následná implementace.

    Školitel: Krajsa Ondřej, Ing., Ph.D.

  23. Paralelizace genetických algoritmů

    Cílem práce je výzkum v oblasti paralelizace genetických algoritmů. Paralelizace je nedílnou součástí snahy o zvýšení efektivity genetických algoritmů a jejich možného využití. Výzkum by měl navázat na současné poznatky a provést výzkum vlivu zvolených parametrů a designu na výkon. Dle zvoleného postupu je nutná znalost některého z programovacích jazyků, dále skriptovacího jazyka Python či Matlab. Zvolené vývojové a testovací prostředí je ponecháno volné volbě. Výsledkem by měla být prezentace a ověření dosažených výsledků.

    Školitel: Škorpil Vladislav, doc. Ing., CSc.

  24. Post-kvantové kryptografické protokoly

    Téma se zabývá analýzou, návrhem a optimalizací moderních post-kvantových kryptografických (PQC) protokolů. Výzkum lze blíže orientovat na vybraný otevřený problém jako např. post-kvantová bezpečnost v blockchain technologii, post-kvantové metody ochrany soukromí, PQC na omezených zařízení, hardwarová akcelerace PQC pomocí FPGA, atd. Předpokládá se zapojení studenta do mezinárodních a národních výzkumných projektů.

    Školitel: Malina Lukáš, doc. Ing., Ph.D.

  25. Rekonstrukce poškozených zvukových signálů hlubokými neuronovými sítěmi

    Práce se bude zabývat moderními metodami restaurace audiosignálu, konkrétně se bude zaměřovat na úlohu doplnit chybějící úsek audiosignálu a na příbuznou úlohu nahrazení saturovaných vzorků. Problémy tohoto typu se v praxi běžně vyskytují (restaurace nahrávek, výpadky v hovorech VoIP apod.). Současné metody zvládají velmi kvalitní interpolaci signálů, které jsou v okolí chybějícího úseku stacionární a mají harmonický charakter. Studium se bude zaměřovat na metody, které kombinují přístupy úspěšné v posledních letech, a to optimalizační metody a trénované hluboké neuronové sítě (DNN). Práce neopomene psychoakustickou stránku problému. (Spolupráce s Acoustics Research Institute, Vídeň)

    Školitel: Rajmic Pavel, prof. Mgr., Ph.D.

  26. Rekonstrukce poškozených zvukových signálů pomocí rozkladů spektrogramu

    V úlohách rekonstrukce audia (declipping, řešení výpadků, zarušení šumem, separace nástrojů z nahrávky apod.) jsou jedny z nejúspěšnějších metod založeny na rozkladech spektrogramů. Tradiční metodou je tzv. non-negative matrix factorization (NMF), která ve vhodná k aplikování na spektrogram. Studium by se zaměřovalo na modifikace tradičního NMF, a to včetně možnosti převodu na neuronovou síť, která by se učila na konkrétním typu řešeného problému.

    Školitel: Rajmic Pavel, prof. Mgr., Ph.D.

  27. Rekonstrukce trojrozměrných dat z magnetické rezonance pomocí komprimovaného snímání

    Nekartézské metody akvizice v magnetické rezonanci (MR) přitahují pozornost kvůli řadě unikátních vlastností, které lze využít pro různé aplikace, hlavně v medicíně. Těmito vlastnostmi jsou např. akcelerace samotného snímání, snížená citlivost na pohybové artefakty a možnost zobrazení tkání s velmi krátkými T2 (např. kortikální kosti, šlachy, vazy, menisky a myelin). Cílem doktorského studia bude: a) vyvinout metodu efektivní trojrozměrné rekonstrukce z UTE (ultra short echo-time) dat pro kvantitativní analýzy ultra krátkých T2 složek založených na nekonvexní optimalizaci, b) prozkoumat limity prostorového rozlišení při snižování počtu UTE projekcí v kontextu urychlování akvizice, c) provádět kvantitativní analýzy MR in vivo. Spolupráce s CEITEC MU, zpracování reálných dat zexperimentálního MR skeneru, školitel specialista Ing. Peter Latta, CSc. Možnost finanční podpory ze strany CEITEC.

    Školitel: Rajmic Pavel, prof. Mgr., Ph.D.

  28. Rezistivně-kapacitní prvky s rozloženými parametry - návrh, realizace a využití v elektronických obvodech

    Práce je zaměřena na výzkum metod návrhu rezistivně-kapacitních prvků s rozloženými parametry (RC-PRP) a využití těchto prvků v elektronických obvodech. Součástí bude zejména zpracování komplexní metodologie pro realizaci impedanční funkce fraktálního, tedy neceločíselného, řádu pomocí RC-PRP. Budou vyvinuty návrhové metody pro získání parametrů RC-PRP v závislosti na požadované impedanční funkci, typu RC-PRP a výrobní technologii. K tomuto účelu bude využit symbolický impedanční popis RC-PRP, numerické optimalizační metody a charakteristické vlastnosti výrobních technologií. Specifika jednotlivých technologií budou vzájemně porovnána a pro vybrané technologie bude zpracován postup přípravy výrobních podkladů. Práce zahrnuje i návrh a ověření aplikací RC-PRP v elektronických obvodech, zejména realizujících obvodové funkce fraktálního řádu.

    Školitel: Kubánek David, Ing., Ph.D.

  29. Sdílení velkých dat v Internetu

    Internet slouží jako nástroj pro sdílení velkých objemů dat. Tato data jsou poskytována v podobě repozitářů, které jsou replikovány a umísťovány na řadě geograficky různých míst. Cílem studia je provést analýzu distribuce dat z pohledu síťové komunikace a vzdálenosti. Výstupem bude návrh systému distribuce dat.

    Školitel: Komosný Dan, prof. Ing., Ph.D.

  30. Separace hudebního zdroje pomocí metod strojového učení a umělých neuronových sítí

    Číslicové zpracování hudebních signálů a obor Music Information Retrieval (MIR) je velmi rychle rozvíjející se multidisciplinární odvětví. Separace hudebního zdroje patří k nedořešeným a žádaným tématům - nejslibnější výsledky zatím vykazují techniky založené na strojovém učení a především na umělých neuronových sítích. Jedná se o systém, který v ideálním případě z finální smíchané hudební nahrávky dokáže separovat jednotlivé instrumenty a vytvořit tak záznamy, které byly před mixáží oddělené. Tím lze vytvořit dekompozici hudebního díla na původní elementy. Cílem disertační práce je návrh efektivního systému pro automatickou separaci hudebního zdroje.

    Školitel: Smékal Zdeněk, prof. Ing., CSc.

  31. Simulační a laboratorní model pro hodnocení komunikačních technologií pro chytré sítě

    Cílem práce je navrhnout komplexní model zvažovaných komunikačních variant pro chytré sítě v energetice, jehož chování lze ověřit v simulačním a laboratorním prostředí. Pro provozovatele distribučních soustav je při budování komunikační infrastruktury nejtěžší volba a výběr vhodné technologie a její zabezpečení. Proto je dalším cílem práce navrhnout a experimentálně ověřit metodiku hodnocení komunikačních technologií a jejich bezpečnosti pro chytré sítě v energetice.

    Školitel: Mlýnek Petr, doc. Ing., Ph.D.

  32. Strojové učení ve fotonice

    Fotonické systémy zahrnují celou řadu oblastí od datových přenosů, přes senzoriku až po kvantové sítě. Každý fotonický systém má vlastní požadavky na přenosovou infrastrukturu, ale i na vstupní a výstupní parametry. Manuální optimalizace rozsáhlých sítí založených na různých typech signálů je téměř nemožná. S pomocí strojového učení lze u fotonických sítí dosáhnout optimalizace jak samotných přenášených signálů, tak celé infrastruktury. V nespolední řadě, lze pomocí algoritmů strojového učení detekovat a klasifikovat nestandardní chování sítě a minimalizovat tak bezpečnostní rizika.

    Školitel: Münster Petr, doc. Ing., Ph.D.

  33. Vícetónové modulace v optických přenosových systémech

    Vícetónové modulace jsou dnes velice často využívaným modulačním přístupem v VDSL, G.fast, PLC, DVB-T, DVB-T2, WLAN IEEE 802.11a, g, n, ac a dalších technologiích. Ve všech výše uvedených systémech se využívá známá a dobře propracovaná modulace DMT (Discrete MultiTone), případně OFDM (Orthogonal Frequency Division Multiplexing). Práce bude věnována možnostem uplatnění vícetónových modulací v optických přenosových systémech.

    Školitel: Šilhavý Pavel, doc. Ing., Ph.D.

  34. Využití strojového učení při modelování zvukových systémů

    Neuronové sítě a strojové učení jsou v oblasti zpracování zvukových signálů v současné době využívány při dolování dat, např. rozpoznání žánru, získávání hudebních informací z nahrávek apod., a při zpracování řeči, např. rozpoznávání slov, identifikaci mluvčího, rozpoznání emocí apod. Jejich potencionální využití je ale také v modelování zvukových systémů. Cílem disertační práce je nalezení algoritmů optimalizace parametrů digitálních hudebních efektů, algoritmů simulujících akustiku prostorů a dalších s využitím strojového učení a modelů slyšení pro trénování neuronových sítí. Výzkum bude zaměřen jednak na statickou optimalizaci parametrů systému podle analogové předlohy a jednak na dynamickou změnu parametrů v reálném čase na základě vlastností zpracovávaného zvukového signálu. Výzkum bude probíhat ve spolupráci s firmami zabývajícími se vývojem SW pro zpracování zvukových signálů.

    Školitel: Schimmel Jiří, doc. Ing., Ph.D.

  35. Vývoj algoritmů pro správu front a řízení přepínání v aktivních síťových prvcích

    Aktivní síťové prvky dnes používají pro správu front a řízení přepínání řadu výkonných algoritmů. Úkolem je implementovat vybrané algoritmy správy front do vývojového systému vybaveného FPGA kartou, proměřit jejich výkonnost a vyvinout vlastní algoritmus řešící na vývojovém systému správu front při respektování standardního značkování používaného při řešení QoS. K řešení bude třeba znalost jazyků C a VHDL, Matlab, popř. Verilog. Navržena bude architektura síťového prvku s prioritním směrováním. Navržen bude také originální postup, jak danou problematiku modelovat matematicky a dále jak tento matematický model implementovat . Softwarová simulace systému, který lze využít pro řízení spojovacího pole určeného pro přepojování datových jednotek, bude rozšířena o realizaci hardwarové implementace, např. pomocí programovatelných logických polí vývojového systému FPGA. Získané poznatky budou zobecněny a vztaženy k teorii vysokorychlostních síťových prvků.

    Školitel: Škorpil Vladislav, doc. Ing., CSc.

  36. Výzkum analogových aktivních funkčních bloků pro biosenzory

    Disertační práce je zaměřena na výzkum původních struktur nekonvenčních analogových aktivních funkčních bloků jako např. proudové či napěťové konvejory pomocí chemického popisu branových veličin. Cílem výzkumu je navrhnout nové struktury chemických konvejorů různé generace a jejich využití v měřicích systémech pro snímání základních veličin v biomedicínckých systémech. Vybrané systémy budou realizovány na čipu a ověřeno experimentálním měřením.

    Školitel: Herencsár Norbert, doc. Ing., Ph.D.

  37. Výzkum emulátorů akumulačních prvků neceločíselného řádu pro důvěryhodné modelování chování reálných systémů

    Disertační práce bude věnována problematice modelovaní akumulačních prvků neceločíselného řádu (-1; +1) pomocí fraktálního kalkulu. Cílem práce je s využitím parazitních jevů tranzistorů výzkum původních důvěryhodných obvodových řešení emulátorů kondenzátoru a cívky s nízkým napájecím napětím a s malou spotřebou. Vybraná nová implementace emulátorů akumulačních prvků budou použity pro modelování různých odrůd a druhů zemědělských produktů a biomedicínských systémů (zrání ovoce či zeleniny, modelování sluchového aparátu, plic a jater člověka a savců, atd.) na základě dat získaných pomocí elektrické impedanční spektroskopie.

    Školitel: Herencsár Norbert, doc. Ing., Ph.D.

  38. Výzkum fraktálních přenosových funkcí vyšších řádů

    Problematika se věnuje definici tvarů přenosových funkcí fraktálního řádu vhodných jak pro kaskádní, tak i nekaskádní syntéze analogových kmitočtových filtrů. Pro jednotlivé typy aproximací, jako Butterworth, Bessel či Čebyšev, jsou pro definované tvary přenosových funkcí a jejich řády stanoveny koeficienty polynomů. Takto stanovené koeficienty jednak respektují primární parametr zvolené aproximace (např. max. plochost modulové charakteristiky, konstantní skupinové zpoždění apod.), avšak současně berou v potaz i další parametry navrhovaného kmitočtového filtru (tj. fázová charakteristika, skupinové zpoždění nebo odezva na jednotkový skok), které se u přenosových funkcí celočíselného řádu vnímají jako nutný důsledek výchozí aproximace. Výsledkem výzkumu jsou sady koeficientů definovaných přenosových funkcí, které využitím přítomných stupňů volnosti dovolují návrh kmitočtových filtrů splňující striktní požadavky na více parametrů kmitočtového filtru současně. Práce pokračuje v problematice, jak byla naší výzkumnou skupinou popsána zde: https://www.degruyter.com/document/doi/10.1515/fca-2021-0030/html (Open Access)

    Školitel: Koton Jaroslav, prof. Ing., Ph.D.

  39. Výzkum vysokofrekvenčních frekvenčně agilních lineárních systémů

    Disertační práce je zaměřena na výzkum původních řešení vysokofrekvenčních frekvenčně agilních lineárních systémů libovolného neceločíselného řádu pomocí nekonvenčních aktivních funkčních bloků. Frekvenčně agilní filtrační systémy jsou specifickým typem rekonfigurovatelných analogových filtrů. Záměrem této práce je návrh nesymetrických i symetrických frekvenčně agilních filtrů třídy 1 až n. Funkčnost navržených obvodů bude ověřována počítačovým modelováním. Vybraná nová obvodová řešení budou realizovány na čipu a ověřeny experimentálním měřením.

    Školitel: Herencsár Norbert, doc. Ing., Ph.D.

  40. Zpracování prostorového zvukového signálu pomocí mikrofonních polí malých rozměrů

    Mikrofonní pole malých rozměrů, osazená zejména MEMS mikrofony, se v současné době používají v řadě aplikací, např. hlasových asistentech, robotech nebo při monitoringu v senzorových sítích, zejména pro svoji schopnost prostorové filtrace zvukového signálu od hluku pozadí, ale mají potenciál i při využití v multimediálních aplikacích včetně rozšířené a virtuální reality. Problémem je ovšem limitace jejich rozměrů s ohledem na schopnost prostorové filtrace na nízkých vzorkovacích kmitočtech. Cílem disertační práce je využití nových metod prostorové filtrace zvukového signálu snímaného polem mikrofonů za účelem dalšího zmenšení rozměrů polí a zvýšení rozlišení a přesnosti filtrace. Práce bude zaměřena nejen na výzkum vhodných algoritmů zpracování signálů pole, ale také na jeho mechanickou konstrukci umožňující úpravu akustických vlastností mikrofonů, zejména tvarování směrových charakteristik. Výzkum bude probíhat ve spolupráci s Fakultou dopravní ČVUT a Université du Maine Le Mans.

    Školitel: Schimmel Jiří, doc. Ing., Ph.D.

  41. Zvýšení poslechové kvality komprimovaných zvukových signálů pomocí hlubokých neuronových sítí

    Přes veškerý vývoj je kvalita zvuku při nízkých bitových rychlostech nízká. Studium by se zabývalo návrhem, konstrukcí a trénováním generativní adversariální neuronové sítě (GAN), která by měla za úkol zvýšit poslechovou kvalitu komprimovaných zvukových signálů. Tedy na vstupu sítě by byl komprimovaný signál, na výstupu jeho poslechově vylepšená verze.

    Školitel: Rajmic Pavel, prof. Mgr., Ph.D.

1. kolo (podání přihlášek od 01.04.2022 do 15.05.2022)

  1. Bezpečnost v konvergovaných sítích

    Cílem je analyzovat nejnovější vývoj a trendy v oblasti konvergovaných sítí, zejména problémy ochrany proti kybernetickým útokům. Na podkladě získaných poznatků se předpokládá návrh inovovaných metod obrany a ochrany, nebo metody nové. Výzkum vyžaduje přehled v oblasti sítí, zkušenosti s prací s programy MATLAB nebo SCILAB, využívat se bude pravděpodobně alespoň jeden z jazyků VHDL, C, Java, evoluční algoritmy, v případě zájmu vývojový systém FPGA.

    Školitel: Škorpil Vladislav, doc. Ing., CSc.

  2. Časově-prostorová analýza a syntéza zvukového pole

    Metoda časově-prostorové analýzy ukazuje kumulativní vývoj zvukového pole jako funkci směru intenzity zvuku formou prostorové impulsní odezvy. Aplikacemi této metody je např. analýza akustiky poslechových prostorů, odhad směru přicházejícího zvuku a další. Časově-prostorová syntéza naopak umožňuje percepčně založenou reprodukci 3D zvukového pole pro filmovou a mutimediální produkci, virtuální a rozšířenou realitu nebo 360-stupňová videa. Cílem disertační práce výzkum a vývoj metod snímání zvukového pole pomocí mikrofonních polí a jejich následné syntézy pro specifické reprodukční systémy.

    Školitel: Schimmel Jiří, doc. Ing., Ph.D.

  3. Časově-prostorová analýza a syntéza zvukového pole

    Metoda časově-prostorové analýzy ukazuje kumulativní vývoj zvukového pole jako funkci směru intenzity zvuku formou prostorové impulsní odezvy. Aplikacemi této metody je např. analýza akustiky poslechových prostorů, odhad směru přicházejícího zvuku a další. Časově-prostorová syntéza naopak umožňuje percepčně založenou reprodukci 3D zvukového pole pro filmovou a mutimediální produkci, virtuální a rozšířenou realitu nebo 360-stupňová videa. Cílem disertační práce výzkum a vývoj metod snímání zvukového pole pomocí mikrofonních polí a jejich následné syntézy pro specifické reprodukční systémy.

    Školitel: Schimmel Jiří, doc. Ing., Ph.D.

  4. Elektronicky konfigurovatelné analogové obvody

    Téma je zaměřeno na návrh dvojbranů, zejména pak filtračních obvodů či např. oscilátorů s možností externí elektronické změny významných parametrů obvodu či v případě filtru i typu kmitočtové odezvy. Předpokládá se i návrh struktur s prvky neceločíselného řádu. Pro tyto účely budou využity především již existující aktivní prvky, popř. budou navrženy jejich modifikované varianty. Předkládají se simulace nejen s jednoduchými modely, ale i s modely na tranzistorové úrovni. Při experimentálním ověřování budou práce zaměřeny především na behaviorální modelování.

    Školitel: Jeřábek Jan, doc. Ing., Ph.D.

  5. Hardwarová implementace moderní kryptografie

    Téma se zabývá výzkumem bezpečnosti a efektivity hardwarových implementací moderních kryptografických schémat na platformách FPGA. Součástí výzkumu je i návrh a optimalizace bezpečnostních protiopatření proti hardwarovým útokům (využití postranních kanálů, vkládání chyb) a jejich testování. Předpokládá se zapojení studenta do mezinárodních a národních výzkumných projektů.

    Školitel: Malina Lukáš, doc. Ing., Ph.D.

  6. Klinicky interpretovatelné strojové učení v oblasti prediktivní analýzy neurodegenerativních a neurovývojových onemocnění

    Se stárnutím populace narůstá potřeba pro počítačovou analýzu dat pacientů trpících neurodegenerativními nebo neurovývojovými onemocněními za účelem objektivní diagnostiky a odhadu progrese, léčby, ale také prevence těchto onemocnění. Cílem této dizertační práce je výzkum a vývoj multimodálních a klinicky interpretovatelných metod strojového učení v oblasti kvantitativní analýzy neurodegenerativních a neurovývojových onemocnění s využitím motorických i nemotorických digitálních biomarkerů. Ve spolupráci s neurology z Fakultní nemocnice u sv. Anny v Brně a Středoevropského technologického institutu Masarykovy univerzity budou vytvořené metody integrovány do systémů založených na technologiích Health 4.0.

    Školitel: Galáž Zoltán, Ing., Ph.D.

  7. Metody pro bezpečnostní testování

    Téma je zaměřeno na výzkum a návrh nových metod, které lze použít při bezpečnostním testování (penetrační testování). Výzkum je cílem na metody použitelné při penetračním testování webových aplikací, síťové infrastruktury, ale také penetračních testech specializovaných zařízení jako je například inteligentní elektroměr. Předpokládá se zapojení studenta do výzkumných projektů Ústavu.

    Školitel: Martinásek Zdeněk, doc. Ing., Ph.D.

  8. Učení se z jedné třídy pro potřeby hledání anomálií v obraze komplexních tvarů

    Klasifikace z jedné třídy zahrnuje techniky strojového učení se modelu s použitím „normálním“ dat (či značně nevyvážených dat) a předpovídání, zda jsou nová data normální či vykazují anomálii oproti trénovacím datům. Tato technika má vysoký potenciál pro uplatnění v mnoha vědních odvětví, zejména v oblasti vizuální kontroly kvality a výrobků. Cílem disertační práce je návrh a implementace inovativních technik založených na strojovém učení, které budou sloužit pro automatickou detekci poruch komplexních tvarů.

    Školitel: Burget Radim, doc. Ing., Ph.D.

  9. Výzkum metod měření srážek prostřednictvím sítí komerčních mikrovlnných spojů

    Měření atmosférických srážek komerčními mikrovlnnými spoji typu bod-bod je perspektivní možností pro získání cenných informací o plošném srážkovém úhrnu, využitelnou pro doplnění dat z měření meteorologickými radary a pozemními srážkoměry pro výpočet kombinovaného srážkového odhadu. Měření mikrovlnnými spoji je však stále zatíženo řadou chyb a nepřesností. Cílem práce je hledat a navrhnout možné nové metody pro zpřesnění tohoto měření, a dále také optimalizovat metody stávající tak, aby výsledná data pokud možno dosahovala požadované kvality a přesnosti pro využitelnost v rámci dalšího zpracování v profesionálních hydrometeorologických aplikacích.

    Školitel: Mlýnek Petr, doc. Ing., Ph.D.

  10. 5G Mobility Network Data Ingestion into “As a Service” Management Platforms

    The Telecommunications Industry is rapidly migrating mobile networks to the 5G standard. At the same time, the IT Industry is moving applications out of local compute and storage nodes into the cloud, including Telecommunications company network management departments. As Telecom network management applications are moved to the cloud, there are concerns about the performance and scale of “As a Service” platforms performing network management functions. One specific area of concern is the ingestion of the massive amount of network data associated with modern 5G mobile networks. This thesis will focus on architectures and approaches to solving real-world performance and scale issues associated with 5G network data ingestion into “As a Service” platforms for Tier 1 Telecommunications service providers.

    Školitel: Hošek Jiří, doc. Ing., Ph.D.

Struktura předmětů s uvedením ECTS kreditů (studijní plán)

Libovolný ročník, zimní semestr
ZkratkaNázevJ.Kr.Pov.Uk.Hod. rozsahSk.Ot.
DPC-ET1Elektrotechnické materiály, materiálové soustavy a výrobní procesycs4Povinně volitelnýdrzkS - 39ano
DPC-EE1Matematické modelování v elektroenergeticecs4Povinně volitelnýdrzkS - 39ano
DPC-ME1Moderní mikroelektronické systémycs4Povinně volitelnýdrzkS - 39ano
DPC-RE1Návrh moderních elektronických obvodůcs4Povinně volitelnýdrzkS - 39ano
DPC-TK1Optimalizační metody a teorie hromadné obsluhycs4Povinně volitelnýdrzkS - 39ano
DPC-FY1Rozhraní a nanostrukturycs4Povinně volitelnýdrzkS - 39ano
DPC-TE1Speciální měřicí metodycs4Povinně volitelnýdrzkS - 39ano
DPC-MA1Statistika. stochastické procesy, operační výzkumcs4Povinně volitelnýdrzkS - 39ano
DPC-AM1Vybrané kapitoly řídicí technikycs4Povinně volitelnýdrzkS - 39ano
DPC-VE1Vybrané statě z výkonové elektroniky a elektrických pohonůcs4Povinně volitelnýdrzkS - 39ano
DPX-JA6Angličtina pro doktorandyen4VolitelnýdrzkCj - 26ano
DPC-RIZŘešení inovačních zadánícs2VolitelnýdrzkS - 39ano
DPC-EIZVědecké publikování od A do Zcs2VolitelnýdrzkS - 26ano
Libovolný ročník, letní semestr
ZkratkaNázevJ.Kr.Pov.Uk.Hod. rozsahSk.Ot.
DPC-TK2Aplikovaná kryptografiecs4Povinně volitelnýdrzkS - 39ano
DPC-MA2Diskrétní procesy v elektrotechnicecs4Povinně volitelnýdrzkS - 39ano
DPC-ME2Mikroelektronické technologiecs4Povinně volitelnýdrzkS - 39ano
DPC-RE2Moderní digitální bezdrátová komunikacecs4Povinně volitelnýdrzkS - 39ano
DPC-EE2Nové trendy a technologie výroby energiecs4Povinně volitelnýdrzkS - 39ano
DPC-TE2Numerické úlohy s parciálními diferenciálními rovnicemics4Povinně volitelnýdrzkS - 39ano
DPC-FY2Spektroskopické metody pro nedestruktivní diagnostikucs4Povinně volitelnýdrzkS - 39ano
DPC-ET2Vybrané diagnostické metody, spolehlivost, jakostcs4Povinně volitelnýdrzkS - 39ano
DPC-AM2Vybrané kapitoly měřicí technikycs4Povinně volitelnýdrzkS - 39ano
DPC-VE2Vybrané statě z elektrických strojů a přístrojůcs4Povinně volitelnýdrzkS - 39ano
DPX-JA6Angličtina pro doktorandyen4VolitelnýdrzkCj - 26ano
DPC-CVPCitování ve vědecké praxics2VolitelnýdrzkS - 26ano
DPC-RIZŘešení inovačních zadánícs2VolitelnýdrzkS - 39ano
Libovolný ročník, celoroční semestr
ZkratkaNázevJ.Kr.Pov.Uk.Hod. rozsahSk.Ot.
DPX-QJAZkouška z angličtiny před státní doktorskou zkouškuen4VolitelnýdrzkK - 3ano