Detail předmětu

Počítačové modelování elektrotechnických zařízení a komponentů

FEKT-BPC-MEMAk. rok: 2023/2024

Předmět se věnuje rozšíření základních poznatků z teoretické elektrotechniky, teorie elektromagnetického pole a numerického modelování při aplikaci vybraných numerických metod. Metoda konečných prvků a její možnosti pro řešení úloh elektromagnetického pole s příklady aplikací analýzy návrhů zařízení a komponentů cestou interpretace elektromagnetických polí zejména statických, stacionárních, kvazistacionárních a kvazistatických. Výuka je výrazně podpořena využitím zejména programových prostředků systému ANSYS (Multiphysic, Workbench, Maxwell). Prostředkem výuky je zvládnutí ANSYSu jako nástroje, je vysvětlován a procvičován přístup k programování a využití silných stránek systému, názorně demonstrována filozofie systému, ukázána a na příkladech procvičována návaznost na další CAD/CAE/CAM parametrického systému SOLIDWORKS.
Počítačová cvičení jsou připravena pro řešení vybraných úloh z široké oblasti elektrotechniky a elektroniky v prostředí ANSYS v návaznosti na 3D parametrický modelář - SOLIDWORKS.

Jazyk výuky

čeština

Počet kreditů

3

Vstupní znalosti

Student, který si zapíše předmět, by měl být schopen:
- definovat základní numerické modely - statický, kvazistatický pomocí soustředěných parametrů, získané v předmětech Elektrotechnika 1 a Elektrotechnika 2.
- popsat fyzikální model elektrostatické a magnetostatické úlohy z kurzů fyziky
- ovládat počítač na základní úrovni, zvládnout prostředí MATLAB, sestavit jednoduché algoritmy
- porozumět matematickému zápisu parciálních diferenciálních rovnic
- aplikovat matematický aparát diferenčního a diferenciálního počtu.

Pravidla hodnocení a ukončení předmětu

Během každého bloku výuky je student veden k přípravě, analýze, sestavení, zprovoznění a vyhodnocení vlastního numerického modelu. Tyto aktivity jsou podporovány, ale nejsou v každé hodině hodnoceny. Vedou studenta k samostatnému způsobu volby a vysvětlení použití nástrojů systému ANSYS tak, aby do konce předmětu v rámci výukových bloků v rozvrhu student připravil, posoudil a nakonec zpracoval podklady k numerickému modelu, který samostatně analyzuje a interpretuje výsledky. Za tuto aktivitu může získat bodové hodnocení od 0 do 40 bodů.
Předmět je ukončen zápočtovým testem v rozsahu 0 až 60 bodů. Zde se prověřuje kvalita definování a popisu zadaného problému, identifikace matematického modelu s jeho následnou numerickou aplikací v systému ANSYS, kontroluje se správnost pochopení a porozumění zadávaní okrajových a počátečních podmínek, schopnost posoudit přesnost dosaženého řešení vyplývající z analýzy výsledků, schopnost studenta vylepšit model, zhodnotit dostupnost prostředků a vysvětlit případné rozdíly ve zvolených přístupech návrhu numerického modelu.
Obě části výuky - přednáška, cvičení (ateliéry) jsou povinné. Po řádné omluvě a dohodě s vyučujícím je možné zameškanou výuku nahradit, obvykle v zápočtovém týdnu.

Učební cíle

Cílem předmětu je doplnit poznatky oblasti z fyziky a matematiky v rovině aplikací a to vybraných numerických modelů elektrotechniky a elektromagnetického pole. Dále pak procvičit a prohloubit znalosti finitních numerických metod, navrhnout a analyzovat přístupy používané při experimentálním a numerickém modelování elektrotechnických úloh a při analýze elektromagnetických polí. Seznámit a vysvětlit studentům efektivitu systému ANSYS a dalších programů pro numerické modelování a analýzu zjednodušených i sdružených úloh formulovaných pomocí vybraných parciálních diferenciálních rovnic aplikovatelných v elektrotechnice. To vše tak, aby student byl schopen samostatně sestavit, analyzovat a interpretovat numerický model, komplexně posoudit validitu dosažených výsledků, oponovat zadavateli jeho argumenty v použitých postupech, interpretacích a způsobu použití systému ANSYS a jeho částí. Student je připravován na to, aby pro zadaný problém zvolil koncepčně správný postup, předvídal komplikace, které se mohou dostavit při řešení, odhadl předpokládanou numerickou chybu získané analýzy. Na konkrétních příkladech je ukázáno, jak sestavit model, ten v případě potřeby korigovat a kontrolovat průběžně správnost postupu, řešení modelu a interpretaci výsledků.
Studenti získají hlubší znalosti a dovednosti v problematice numerického modelování úloh v elektrotechnice a některých mezioborových disciplín, to vše se zaměřením na počítačový prototyping. Dále si osvojí a znalosti, získají přehled v používání metod modelování úloh elektrotechniky, vždy s návazností na přípravu 3D modelu. Budou schopni rozlišit výhody parametrického a neparametrického modelování. Budou schopni navrhnout, konstruovat a revidovat ve vhodném programovém prostředí modely jednoduchých úloh, ty formulovat na základě redukovaných Maxwellových rovnic. Z analýz modelů budou schopni interpretovat jak fyzikální tak technické parametry modelu, kategorizovat zařazení vlastnosti modelu, sestavit a revidovat sdružené úlohy. Tyto dovednosti jsou využívány a žádány v komerční sféře a jsou požadovány v průmyslu. Studenti budou připraveni pro náročnější teoretickou práci, analýzu a vytvoření komplikovanějších modelů v navazujícím předmětu MMEM.

Základní literatura

KROUTILOVÁ, E.; STEINBAUER, M.; HADINEC, M.; FIALA, P.; BARTUŠEK, K. Numerické modelování nehomogenity v materiálech. ElectroScope - http://www.electroscope.zcu. cz, 2007, roč. 2007, č. 4, s. 1 ( s.)ISSN: 1802- 4564. (CS)
Dědek L., Dědková J.: Elektromagnetismus. Skripta, VUTIUM, Brno 2000 (CS)
Fiala P., Bachorec T., Kříž T.: Počítačové modelování elektrotechnických zařízení a komponentů, (BMEM), počítačová cvičení, IET/UTEE FEKT v Brně (CS)

Zařazení předmětu ve studijních plánech

  • Program BPC-AUD bakalářský

    specializace AUDB-TECH , libovolný ročník, zimní semestr, volitelný

  • Program BPC-AMT bakalářský, libovolný ročník, zimní semestr, volitelný
  • Program BPC-EKT bakalářský, libovolný ročník, zimní semestr, volitelný
  • Program BKC-EKT bakalářský, libovolný ročník, zimní semestr, volitelný
  • Program BPC-IBE bakalářský, libovolný ročník, zimní semestr, volitelný
  • Program BKC-MET bakalářský, libovolný ročník, zimní semestr, volitelný
  • Program BPC-MET bakalářský, libovolný ročník, zimní semestr, volitelný
  • Program BPC-SEE bakalářský, libovolný ročník, zimní semestr, volitelný
  • Program BKC-SEE bakalářský, libovolný ročník, zimní semestr, volitelný
  • Program BPC-TLI bakalářský, libovolný ročník, zimní semestr, volitelný
  • Program BKC-TLI bakalářský, libovolný ročník, zimní semestr, volitelný

Typ (způsob) výuky

 

Přednáška

26 hod., povinná

Vyučující / Lektor

Osnova

1. Úvod do modelování a numerických metod, Metoda konečných prvků (MKP), základní úlohy (statická, stacionární, kvazistacionární, nestacionární)
2. Okrajové podmínky, vliv na kvalitu modelu, chyby, fyzikální interpretace modelu
3. Základní úlohy- statická, stacionární, kvazistacionární, nestacionární, matematický model, řešení matematického modelu, stabilita řešení, interpretace výsledků
4. Elektrostatické modely- příklady, zadání, okrajové podmínky, aplikační sféra
5. Magnetostatické modely- příklady, zadání, okrajové podmínky, aplikační sféra
6. Teplotní úlohy- matematický model, okrajové podmínky, aplikace, efekty vedení, proudění a radiace
7. Parametrické modely - nástroje, vazba na MPK, prostředí SOLIDWORKS
8. Zásady parametrického modelování, tvorba modelů pro analýzu MKP
9. Sdružené a vázané úlohy, popis, příklady v elektrotechnice
10. Fyzikální význam a interpretace výsledků, vyhodnocování a zobrazování výsledků, interpretace složitějších veličin
11. Nestacionární úlohy v elektrotechnice, vazba modelu na vlastnosti komponentů, přesnost analyzovaných výsledků  

Cvičení na počítači

26 hod., povinná

Vyučující / Lektor

Osnova

1. Úvod, seznámení s prostředím ANSYS Workbench, Metoda konečných prvků (MKP), Základní analýzy MKP v systému ANSYS, moduly Workbench, Maxwell, Multiphysics
2. Základní dvoudimensionální (2D), 2D rotačně symetrická a třídimensionální (3D) úlohy elektrotechniky, statická, harmonická, přechodová analýza
3. Elektrostatická 2D úloha - popis, sestavení, analýza, interpretace výsledků
4. Magnetostatická 2D úloha s vazbou na obvodové prvky, popis, sestavení, analýza, interpretace výsledků, diskuze nad numerickými chybami - přesnost řešení a jejich korekce, nástroje
5. Popis, tipy a rozsah sdružených a vázaných úloh, procvičení příkladného řešení, zadání samostatných projektů pro studenty
6. Popis, ukázka a procvičení geometricky a matematicky složitější úlohy elektrotechniky, procvičení analýzy a používaných nástrojů systému ANSYS
7. Kategorizace a rozčlenění problematiky interpretací a vyhodnocování výsledků, příklad, ukázka nástrojů a jejich předností v systému ANSYS
8. Seznámení s prostředím SOLIDWORKS, návrh jednoduché 3D geometrie, model export do systému ANSYS a sestavení MKP modelu. Tvorba jednoduchých 2D a 3D modelů v SOLIDWORK
9. Tvorba složitějších 2D a 3D modelů v parametrickém modeláři, export numerického modelu MKP. Vlastní sestavení 3D úlohy, analýza MKP modelu s vazbou na parametrický modelářský systém a vyhodnocení výsledků
10. Odevzdání samostatných projektů, diskuze, obhajoba způsobu řešení, obhajoba zvoleného přístupu, oponování výsledků a přesnosti analýzy.
11. Zápočtový test, odevzdání samostatných projektů, uzavření předmětu.