Detail předmětu
Matematika IV
FSI-4MAk. rok: 2021/2022
Předmět je zaměřen na seznámení studentů s metodami popisné statistiky, základy teorie pravděpodobnosti (náhodné jevy, pravděpodobnost, náhodná veličina, náhodný vektor) a matematické statistiky (náhodný výběr, odhady parametrů, testování statistických hypotéz, lineární regresní analýza). Úlohy na procvičení látky jsou orientovány na praktické aplikace ve strojírenských oborech. Počítačovou podporou je nepovinný předmět Statistický software.
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Prerekvizity
Literatura
Karpíšek, Z.: Matematika IV. Pravděpodobnost a statistika. Učební text FSI VUT v Brně. Akademické nakladatelství CERM: Brno, 2003.
Hahn, G. J. - Shapiro, S. S.: Statistical Models in Engineering.New York : John Wiley & Sons, 1994.
Karpíšek, Z., Drdla, M.: Applied Statistics. Textbook. Brno : FME BUT, 2007. File ApplStat2007.pdf .
Meloun, M. - Militký, J.: Statistické zpracování experimentálních dat. Praha : Plus, 1994.
Anděl, J.: Základy matematické statistiky. Praha : Matfyzpress, 2005.
Plánované vzdělávací činnosti a výukové metody
Způsob a kritéria hodnocení
Jazyk výuky
Cíl
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Zařazení předmětu ve studijních plánech
- Program B-FIN-P bakalářský, 2. ročník, letní semestr, 5 kreditů, povinný
- Program B-MET-P bakalářský, 2. ročník, letní semestr, 5 kreditů, povinný
- Program B-ZSI-P bakalářský
specializace MTI , 2. ročník, letní semestr, 5 kreditů, povinný
specializace STI , 2. ročník, letní semestr, 5 kreditů, povinný - Program N-PMO-P magisterský navazující, 1. ročník, letní semestr, 5 kreditů, povinně volitelný
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
2. Podmíněná pravděpodobnost. Nezávislé jevy.
3. Náhodná veličina, druhy, funkční charakteristiky.
4. Číselné charakteristiky náhodné veličiny.
5. Základní diskrétní rozdělení Bi, H, Po (vlastnosti a užití).
6. Základní spojitá rozdělení R, N (vlastnosti a užití).
7. Dvourozměrný diskrétní náhodný vektor, druhy, funkční a číselné charakteristiky.
8. Náhodný výběr, výběrové charakteristiky (vlastnosti, výběr z N).
9. Odhady parametrů (bodové a intervalové odhady parametrů N a Bi).
10. Testování statistických hypotéz (druhy, základní pojmy, test).
11. Testy hypotéz o parametrech N, Bi a testy rozdělení.
12. Základy regresní analýzy.
13. Lineární regresní model, odhady a testy hypotéz.
Cvičení
Vyučující / Lektor
Osnova
2. Popisná statistika (dvourozměrný statistický soubor). Kombinatorika.
3. Pravděpodobnost (výpočty pomocí m/n a vlastností). Zadání semestrální práce.
4. Podmíněná pravděpodobnost. Nezávislé jevy.
5. Písemná práce (3 příklady, maximálně 10 bodů). Funkční a číselné charakteristiky náhodné veličiny.
6. Funkční a číselné charakteristiky náhodné veličiny - dokončení.
7. Základní rozdělení pravděpodobnosti(Bi, H, Po, N).
8. Dvourozměrný diskrétní náhodný vektor, funkční a číselné charakteristiky.
9. Písemná práce (3 příklady, maximálně 10 bodů).
10. Bodové a intervalové odhady parametrů N a Bi.
11. Testy hypotéz o parametrech N.
12. Testy hypotéz o parametrech N a Bi - dokončení. Testy rozdělení.
13. Lineární regrese (přímka), odhady, testy a graf. Hodnocení semestrální práce (maximálně 5 bodů).
Cvičení s počítačovou podporou
Vyučující / Lektor
Osnova
2. Popisná statistika (jednorozměrný statistický soubor, dvourozměrný statistický soubor).
3. Základní rozdělení pravděpodobnosti(Bi, H, Po, N).
4. Bodové a intervalové odhady parametrů N a Bi.
5. Testy hypotéz o parametrech N a Bi - dokončení. Testy rozdělení.
6. Lineární regrese (přímka), odhady, testy a graf.
eLearning