Detail předmětu

Senzory neelektrických veličin

FEKT-MSNVAk. rok: 2012/2013

Předmět poskytuje studentům přehled používaných principů snímačů, jejich parametrů a konstrukcí. Zabývá se instrumentací, koncepcí a postupy měření neelektrických veličin. Na skutečných příkladech z průmyslové praxe prezentuje zejména specifika těchto měření a odlišnosti oproti obvyklým elektronickým měřením elektrických veličin. Pozornost je věnována i snímačům a metodám měření využívajících optických signálů, optických vláknových senzorů a dále sběru, zpracování a vyhodnocení (prezentaci) naměřených výsledků.

Jazyk výuky

čeština

Počet kreditů

6

Výsledky učení předmětu

Absolvent kurzu je schopen:
- získat základní, v technické praxi dobře použitelné znalosti a dovednosti z oblasti vláknové senzorové techniky a optických vláknových senzorů
- diskutovat návrh základní koncepce měřicího řetězce,
- určit optimální metodu měření,
- definovat měřená data a
- popsat, zpracovat a vyhodnotit naměřené výsledky a
- další.


Absolvent kurzu získá základní teoretické znalosti a praktické dovednosti z oblasti snímačů a metod měření nejfrekventovanějších neelektrických veličin, včetně návrhu koncepce měření, zpracování a vyhodnocení výsledků.

Prerekvizity

Jsou požadované znalosti na úrovni bakalářského studia (BMFV) a platné přezkoušení pro kvalifikaci pracovníků pro samostatnou činnost (ve smyslu §6 Vyhlášky).

Absolvent, který si zapíše kurz, by měl být chopen:
- popsat jednotlivé druhy (typy) senzorů,
- vysvětlit používané modulace u senzorů,
- popsat a vyjmenovat analogové a číslicové senzory a metody měření,
- vysvětlit interferenčni jevy a z nich vyplývající možnosti
- diskutovat a vysvětlit jednotlivé typy interferometrů
- definovat a navrhnout základní bloky měřicích systémů,
- dokázat změřit základní fyzikální veličiny a
- diskutovat aplikační možnosti, příp. další.

Zájemce o kurz by měl být vybaven znalostmi základních fyzikálních a elektrotechnických principů.

Plánované vzdělávací činnosti a výukové metody

Metody vyučování závisejí na způsobu výuky a jsou popsány článkem 7 Studijního a zkušebního řádu VUT. Laboratorní (numerická) výuka je povinná, řádně omluvené zameškané laboratorní cvičení (maximálně dvě) lze po domluvě s vyučujícím nahradit (obvykle v zápočtovém týdnu). Vymezení kontrolované výuky a způsob jejího provádění stanoví obvykle i každoročně aktualizovaná vyhláška garanta předmětu.

Způsob a kritéria hodnocení

Zkouška je zaměřena na ověření znalostí (orientace) absolvovaného kurzu. Má povinnou písemnou a laboratorní (numerickou) a nepovinou ústní část.
laboratoří 0 - 40
písemná část zkoušky 20 - 50
ústní část zkoušky 0 - 10

Osnovy výuky

Definice oboru, popis jednotlivých veličin, využití v automatizační technice, robotice, defektoskopii a dalších oborech. Etalonáž základních veličin, měřicí kanál, systém, statická a dynamická měření fyzikálních veličin. Výhody měření neelektrických veličin elektrickými metodami. Definice snímače. Základní vlastnosti a požadavky. Fyzikální model snímače. Rozdělení snímačů.
Snímače a měření polohy a rozměrů.
Snímače a měření rychlosti a zrychlení (přímočaré, úhlové)
Snímače a měření sil, tlaku a hmotnosti.
Snímače a měření deformace a momentu síly.
Snímače a měření vibrací, vibrační analýza (defektoskopie).
Snímače a měření teploty, tepla, tepelného toku.
Snímače a měření vlhkosti, hladiny a průtoku.
Snímače a měření záření (ultrafialového, viditelného, infračerveného).
Snímače a měření ionizujícího záření, složení látek a parametrů životního prostředí.
Chemické snímače a biosnímače.
Optické snímače a OVS.
Snímače a měření v zabezpečovací technice (monitorování, ochrana objektů atd.).
Snímače a měření ostatních veličin, speciální metody a obvody pro měření fyzikálních veličin. Další směry rozvoje snímačové techniky.
Základní koncepce měřičů, konstrukční řešení. Měřící systémy pro sběr a zpracování měřených dat (protokoly, sběrnice).

Učební cíle

Cílem kursu je seznámit posluchače se základní teorií, moderními principy a konstrukcemi snímačů fyzikálních veličin a poskytnout znalosti pro jejich návrh a optimální využití nad rámec bakalářského kurzu BMFV. Dále jim prezentovat základní problémové oblasti snímačové techniky (parazitní vlivy, kalibrace, diagnostika apod.) a jejich eliminaci. Hlavním úkolem kursu je inženýrská znalost základů senzorové techniky (informatiky) fyzikálních veličin, které představují v průmyslové i vědecké praxi minimálně 93 % všech měření.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Laboratorní výuka je povinná, řádně omluvené zameškané laboratorní cvičení (maximálně dvě) lze po domluvě s vyučujícím nahradit (obvykle v zápočtovém týdnu). Vymezení kontrolované výuky a způsob jejího provádění stanoví obvykle každoročně aktualizovaná vyhláška garanta předmětu.

Základní literatura

ZEHNULA,K.: Snímače neelektrických veličin, SNTL Praha, 1986 (CS)
ZEHNULA,K.: Čidla robotů. Praha SNTL, 1990 (CS)
ĎAĎO,S.-KREIDL,M.: Senzory a měřicí obvody. ČVUT Praha, 1996 (CS)

Doporučená literatura

ĎAĎO,S.-BEJČEK,L.- PLATIL,A.: Měření průtoku a hladiny. Ben Praha 2005, (CS)
Internet

Zařazení předmětu ve studijních plánech

  • Program EEKR-M1 magisterský navazující

    obor M1-KAM , 1. ročník, zimní semestr, povinný

  • Program EEKR-M magisterský navazující

    obor M-KAM , 1. ročník, zimní semestr, povinný
    obor M-BEI , 2. ročník, zimní semestr, volitelný mimooborový

  • Program EEKR-M1 magisterský navazující

    obor M1-BEI , 2. ročník, zimní semestr, volitelný mimooborový
    obor M1-EEN , 2. ročník, zimní semestr, volitelný mimooborový

  • Program EEKR-M magisterský navazující

    obor M-EEN , 2. ročník, zimní semestr, volitelný mimooborový

  • Program EEKR-CZV celoživotní vzdělávání (není studentem)

    obor ET-CZV , 1. ročník, zimní semestr, povinný

Typ (způsob) výuky

 

Přednáška

39 hod., nepovinná

Vyučující / Lektor

Osnova

Definice oboru, popis jednotlivých veličin, využití v automatizační technice, robotice, defektoskopii a dalších oborech. Etalonáž základních veličin, měřicí kanál, systém, statická a dynamická měření fyzikálních veličin. Výhody měření neelektrických veličin elektrickými metodami. Definice snímače. Základní vlastnosti a požadavky. Fyzikální model snímače. Rozdělení snímačů.
Snímače a měření polohy a rozměrů.
Snímače a měření rychlosti a zrychlení (přímočaré, úhlové)
Snímače a měření sil, tlaku a hmotnosti.
Snímače a měření deformace a momentu síly.
Snímače a měření vibrací, vibrační analýza (defektoskopie).
Snímače a měření teploty, tepla, tepelného toku.
Snímače a měření vlhkosti, hladiny a průtoku.
Snímače a měření záření (ultrafialového, viditelného, infračerveného).
Snímače a měření ionizujícího záření, složení látek a parametrů životního prostředí.
Snímače a měření v zabezpečovací technice (monitorování, ochrana objektů atd.).
Snímače a měření ostatních veličin, speciální metody a obvody pro měření fyzikálních veličin. Další směry rozvoje snímačové techniky. Fluidikové snímače, biosnímače a chemické snímače.
Základní koncepce měřičů, konstrukční řešení. Měřící systémy pro sběr a zpracování měřených dat (protokoly, sběrnice).

Laboratorní cvičení

26 hod., povinná

Vyučující / Lektor

Osnova

Úvodní cvičení. Administrativní a organizační záležitosti. Seznámení se strukturou, obsahem, formou a požadavky kursu. Bezpečnost práce v laboratoři.
Semestrální projekt na téma:
Linearizace termistoru
Termoelektrický jev, vlastnosti termočlánků
Fotoelektrické články
Měření magnetického pole
Ultrazvukový snímač
Snímače mechanického napětí - tenzometry
Snímače ionizujícího záření - Geiger-Müllerovy detektory