Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
studijní program
Fakulta: FEKTZkratka: DPC-EKTAk. rok: 2023/2024
Typ studijního programu: doktorský
Kód studijního programu: P0714D060009
Udělovaný titul: Ph.D.
Jazyk výuky: čeština
Akreditace: 28.5.2019 - 27.5.2029
Forma studia
Prezenční studium
Standardní doba studia
4 roky
Garant programu
doc. Ing. Martin Štumpf, Ph.D.
Oborová rada
Předseda :doc. Ing. Martin Štumpf, Ph.D.Člen interní :prof. Ing. Aleš Prokeš, Ph.D.doc. Ing. Tomáš Götthans, Ph.D.doc. Ing. Jaroslav Láčík, Ph.D.prof. Dr. Ing. Zbyněk Raidaprof. Ing. Roman Šotner, Ph.D.doc. Ing. Jiří Petržela, Ph.D.Člen externí :Ing. Ondřej Číp, Ph.D.doc. Ing. Milan Polívka, Ph.D.
Oblasti vzdělávání
Cíle studia
Poskytnout doktorské vzdělání absolventům magisterského vysokoškolského studia v oblasti elektroniky a komunikačních technologií. Prohloubit teoretické znalosti studentů ve vybraných částech vyšší matematiky a fyziky a dát jím též potřebné vědomosti a praktické dovednosti z aplikované informatiky a výpočetní techniky. Naučit je metodám vědecké práce.
Profil absolventa
Absolvent bude umět řešit vědecké a složité technické úlohy v oblasti elektroniky a elektronických komunikací. Absolventi doktorského studijního programu "Elektronika a komunikační technologie" budou v oblasti elektroniky a sdělovací techniky schopni pracovat jako vědečtí a výzkumní pracovníci v základním či aplikovaném výzkumu, jako specializovaní odborníci vývoje, konstrukce a provozu v různých výzkumných a vývojových institucích, elektrotechnických a elektronických výrobních firmách a společnostech a u uživatelů komunikačních systémů a zařízení, přičemž zde budou schopni tvůrčím způsobem využívat moderní výpočetní komunikační a měřicí techniku.
Charakteristika profesí
Absolventi doktorského studijního programu "Elektronika a komunikační technologie" jsou schopni samostatně řešit složité vědecké a technické úlohy v oblasti elektroniky a komunikací. Díky kvalitnímu rozvinutému teoretickému vzdělání a specializaci ve vybraném oboru jsou absolventi doktorského studia vyhledáváni jako specialisté v oblasti elektroniky a komunikační techniky. Absolventi doktorského studijního programu budou schopni pracovat v oblasti elektroniky a sdělovací techniky jako vědečtí a výzkumní pracovníci v základním či aplikovaném výzkumu, jako specializovaní odborníci vývoje, konstrukce a provozu v různých výzkumných a vývojových institucích, elektrotechnických a elektronických výrobních firmách a společnostech, přičemž zde budou schopni tvůrčím způsobem využívat moderní výpočetní komunikační a měřicí techniku.
Podmínky splnění
Studium doktoranda probíhá podle individuálního studijního plánu, který zpracuje v úvodu studia školitel doktoranda ve spolupráci s doktorandem. V individuálním studijním plánu jsou specifikovány všechny povinnosti stanovené v souladu se Studijním a zkušebním řádem VUT, které musí doktorand k úspěšnému ukončení studia splnit. Tyto povinnosti jsou časově rozvrženy do celého období studia, jsou bodově ohodnoceny a v pevně daných termínech probíhá kontrola jejich plnění. Student si zapíše a vykoná zkoušky z povinných (Návrh moderních elektronických obvodů, Moderní digitální bezdrátová komunikace), minimálně dvou povinně volitelných předmětů ohledem na zaměření jeho disertační práce, a dále minimálně dvou volitelných předmětů (Angličtina pro doktorandy, Řešení inovačních zadání, Vědecké publikování od A do Z) Ke státní doktorské zkoušce se může student přihlásit až po vykonání všech zkoušek předepsaných jeho individuálním studijním plánem. Před státní doktorskou zkouškou student vypracuje pojednání k disertační práci, v němž detailně popíše cíle práce, důkladné zhodnocení stavu poznání v oblasti řešené disertace, charakteristiku metod, které hodlá při řešení uplatňovat. Obhajoba pojednání, které je oponováno, je součástí státní doktorské zkoušky. V další části zkoušky musí student prokázat hluboké teoretické i praktické znalosti v oblasti elektrotechniky, elektroniky, komunikační techniky, obecné teorie obvodů a elektromagnetického pole, zpracování signálů, anténní a vysokofrekvenční techniky. Státní doktorská zkouška probíhá ústní formou a kromě diskuze nad pojednáním k disertační práci se také skládá z tematických okruhů týkajících se povinných a povinně volitelných předmětů. K obhajobě disertační práce se student hlásí po vykonání státní doktorské zkoušky a po splnění podmínek pro ukončení, jakými jsou účast na výuce, vědecká a odborná činnost (tvůrčí činnost), a minimálně měsíční studijní nebo pracovní stáž na zahraniční instituci anebo účast na mezinárodním tvůrčím projektu.
Vytváření studijních plánů
Studium doktoranda probíhá podle individuálního studijního plánu (dále jen ISP), který zpracuje v úvodu studia školitel doktoranda ve spolupráci s doktorandem. Individuální studijní plán je pro doktoranda závazný. Jsou v něm specifikovány všechny povinnosti stanovené v souladu se Studijním a zkušebním řádem VUT, které musí doktorand k úspěšnému ukončení studia splnit. Tyto povinnosti jsou časově rozvrženy do celého období studia, jsou bodově ohodnoceny a v pevně daných termínech probíhá kontrola jejich plnění. Průběžné bodové hodnocení všech aktivit doktoranda je vedeno v dokumentu „Celkové bodové hodnocení doktoranda“ a je součástí ISP. Při zahájení dalšího roku studia pak školitel do ISP zaznamená případné změny. Nejpozději do 15. 10. každého roku studia odevzdává doktorand vytištěný a podepsaný ISP na vědeckém oddělení fakulty ke kontrole a založení. Během prvních čtyř semestrů skládá doktorand zkoušky z povinných, povinně volitelných anebo volitelných předmětů pro splnění bodových limitů ze Studijní oblasti, a současně se intenzivně zabývá vlastním studiem a analýzou poznatků v oboru stanoveném tématem disertační práce a průběžným publikováním takto získaných poznatků a vlastních výsledků. V dalších semestrech se doktorand již více soustřeďuje na výzkum a vývoj, který souvisí s tématem disertační práce, na publikování výsledků své tvůrčí práce a na vlastní zpracování disertační práce. Do konce druhého roku studia skládá doktorand státní doktorskou zkoušku, kterou prokazuje široký rozhled a hluboké znalosti v oboru, souvisejícím s tématem disertační práce. K této zkoušce se musí přihlásit nejpozději do 30. dubna ve druhém roce svého studia. Státní doktorské zkoušce předchází zkouška z anglického jazyka. Ve třetím a čtvrtém roce svého studia provádí doktorand potřebnou výzkumnou činnost, publikuje dosažené výsledky a zpracovává svoji disertační práci. Součástí studijních povinností v doktorském studijním programu je absolvování části studia na zahraniční instituci nebo účast na mezinárodním tvůrčím projektu s výsledky publikovanými nebo prezentovanými v zahraničí nebo jiná forma přímé účasti studenta na mezinárodní spolupráci, což je nutné doložit nejpozději při odevzdání disertační práce. Doktorandi ve čtvrtém roce studia předkládají do konce zimního zkouškového období svému školiteli rozpracovanou disertační práci, který ji ohodnotí. Disertační práci doktorand odevzdává do konce 4. roku studia. Student prezenční formy doktorského studia je v průběhu studia povinen absolvovat pedagogickou praxi, tj. působit v procesu výuky. Zapojení doktoranda do pedagogické činnosti je součástí jeho vědecké přípravy. Pedagogickou praxí doktorand získává zkušenosti v předávání poznatků a zdokonaluje prezentační dovednosti. Skladbu pedagogických aktivit (cvičení, laboratorní cvičení, vedení projektů apod.) určí doktorandovi vedoucí daného ústavu po dohodě se školitelem. Povinnost pedagogické praxe se nevztahuje na doktorandy-samoplátce a na doktorandy v kombinované formě studia. Zapojení do výuky v rámci pedagogické praxe potvrdí po jejím splnění školitel v IS VUT.
Vypsaná témata doktorského studijního programu
Nowadays, a vast amount of visual data to be stored and/or transmitted is rapidly increasing. The compression efficiency of traditional transformation-based lossy image compression techniques is reaching its limits. Therefore, efficient data representation provided by a suitable image compression technique is vital, especially from the viewpoint of emerging image formats, for instance omnidirectional and light field images [1]-[3]. According to contemporary research [4], [5], machine and deep learning (ML and DL) based technologies can be suitable candidates to make the image compression more reliable and efficient. Consequently, smaller file sizes and higher quality streams can be achieved. This work focuses on the research in the development of robust ML/DL-based perceptually optimized lossy image compression for conventional (2D) and advanced image formats (e.g., omnidirectional-360◦ images). At the beginning, investigation and selection of suitable ML/DL-based architectures for perceptually optimized lossy image compression schemes will be conducted. The image distortions are very specific to ML/DL-based codecs previously unseen with conventional transformation-based compression scheme. Hence, in the next steps, performance evaluation of ML/DL-based perceptually optimized compression schemes using suitable Quality of Experience (QoE) objective and subjective techniques must be provided. For instance, in the case of 360◦ images, the QoE can be influenced by many factors (e.g., compression algorithms, viewing conditions). Definition and prediction of these factors for omnidirectional images becomes very important. After that the research will focus on the benchmarking and optimization of computational performance of the ML/DL-based algorithms. Special attention must also be paid to selecting subsets of samples used for training, validation, and testing to achieve unbiased performance evaluation. Among others, it is necessary to verify the functionality of the proposed methods and procedures (e.g., testing of possible future applications). The ML/DL algorithms must find tradeoff between complexity, accuracy and efficiency. The ML/DL algorithms are expected to be programmed in Python or MATLAB using available libraries (PyTorch, Keras, TensorFlow) and toolboxes (Deep Learning Toolbox), respectively. At the end, the own created image dataset as well as the ML/DL models and algorithms will be freely available to the wide scientific community, which will not only ensure the reproducibility of the achieved results, but will also be the basis for further research and development in the fields of multimedia communication and image processing. References: [1] M. Simka, J. Kufa and L. Polak, "Picture Quality of 360° Images Compressed by Emerging Compression Algorithms," 2022 32nd International Conference Radioelektronika, Kosice, Slovakia, 2022, pp. 1-4, doi: 10.1109/RADIOELEKTRONIKA54537.2022.9764941. [2] J. Gutiérrez et al., "Subjective Evaluation of Visual Quality and Simulator Sickness of Short 360∘ Videos: ITU-T Rec. P.919," in IEEE Transactions on Multimedia, vol. 24, pp. 3087-3100, 2022, doi: 10.1109/TMM.2021.3093717. [3] M. Xu, C. Li, S. Zhang and P. L. Callet, "State-of-the-Art in 360° Video/Image Processing: Perception, Assessment and Compression," in IEEE Journal of Selected Topics in Signal Processing, vol. 14, no. 1, pp. 5-26, Jan. 2020, doi: 10.1109/JSTSP.2020.2966864. [4] Ch.-F. Hsu, T.-H. Hung and Ch.-H. Hsu, “Optimizing Immersive Video Coding Configurations Using Deep Learning: A Case Study on TMIV,” ACM Transactions on Multimedia Computing, Communications, and Applications, vol. 18, no. 1, pp. 1-25, Jan. 2022. DOI: 10.1145/3471191 [5] X. Feng, Y. Liu and S. Wei, "LiveDeep: Online Viewport Prediction for Live Virtual Reality Streaming Using Lifelong Deep Learning," in Proc. of Conf. on VR, March 2020, pp. 800-808. DOI: 10.1109/VR46266.2020.00104
Školitel: Polák Ladislav, doc. Ing., Ph.D.
Tématem dizertační práce je návrh radiových obvodů pro zpracování signálu, přičemž hlavním cílem je vytvořit obvody pro linearizaci výkonových zesilovačů používaných v kosmických aplikacích. Tyto nové obvody by měly být schopny efektivně a přesně linearizovat výkonové zesilovače, což by vedlo ke zlepšení kvality signálu a celkového výkonu systému. Vzhledem k použití v kosmických aplikacích budou obvody navrhovány s ohledem na extrémní podmínky, jako jsou vysoké teploty, nízké tlaky a vysoká radiace. Navíc se v práce zaměří na nekonvenční přístupy jako je využití strojového učení pro optimalizaci návrhu obvodů a zlepšení jejich vlastností. [1] Kumar, A., Shipra, & Rawat, M. (2023, February). Bandlimited DPD Adapted APD for 5G Communication. IEEE Transactions on Circuits and Systems II: Express Briefs, 70(2), 496–500. https://doi.org/10.1109/tcsii.2022.3177750
Školitel: Götthans Tomáš, doc. Ing., Ph.D.
The integrated circuits are very important for processing of signals from sensors and sensor readouts as a part of modern physical layer of communication systems [1], [2]. They offer significant minimization of system area and low power consumption. Therefore, these concepts are highly useful for biomedical applications (blood analysis – presence of various chemicals, bio-impedances measurement and evaluation, etc. [3], [4]), in mechanics (distance influences capacity) [5], etc. This topic includes study of utilization of discrete of-the-shelf as well as integrated active building cells and blocks (amplifiers, converters, generators, flip-flop circuits, etc.) and study of features of currently available types of sensors for various physical quantities. The recommendations, requirements, models, methodologies and specific solutions for various specific active sensor readouts and processing of signals are expected to be formulated for proposals of novel and advanced systems. The initial state of work concentrates on review of state of the art in discussed areas and results achieved at the workplace. It allows to find the most suitable specific topic (methodology, verification and measurement, modeling, discrete/integrated analog/mixed low-power or complex systems design) fitting to interests of candidate. These activities expect involvement in experimental work (in frame of projects of basic research – cooperation with research team including foreign experts) on design and implementation of integer-order as well as fractional-order circuits [4], modules (sensing readouts) [5] and components in discrete or integrated form and writing and dissemination of publications. This specialization offers significant enhancement of skills and competences in work with modern software tools (PSpice, Cadence Virtuoso/Spectre) of analog/mixed design approaches and further experience in detailed principles of advanced circuit solutions including cooperation on design of application specific integrated circuit. References [1] R. Sotner, J. Jerabek, L. Polak, J. Petrzela, W. Jaikla and S. Tuntrakool, “Illuminance Sensing in Agriculture Applications Based on Infra-Red Short-Range Compact Transmitter Using 0.35 um CMOS Active Device.” IEEE Access, vol. 8, pp. 18149-18161, 2020, doi: 10.1109/ACCESS.2020.2966752 [2] R. Sotner, L. Polak, J. Jerabek, “Low-cost remote distance and height sensing analog device for laboratory agriculture environments.” Measurement Science and Technology, online first, 2022, doi: 10.1088/1361-6501/ac543c [3] C. Vastarouchas, C.Psychalinos, A.S. Elwakil, A.A.Al-Ali, “Novel Two-Measurements-Only Cole-Cole Bio-Impedance Parameters Extraction Technique.” Measurement, vol. 131, pp. 394–399, 2019. doi: 10.1016/j.measurement.2018.09.008 [4] S. Kapoulea, C. Psychalinos, A. S. Elwakil, “Realization of Cole-Davidson function-based impedance models: Application on Plant Tissues.” Fractal and Fractional Journal, vol. 4, 54, 2020. doi: 10.3390/fractalfract4040054 [5] L. Polak, R. Sotner, J. Petrzela, J. Jerabek, “CMOS Current Feedback Operational Amplifier-Based Relaxation Generator for Capacity to Voltage Sensor Interface.” Sensors, vol. 18, 4488, 2018. doi: 10.3390/s18124488
Školitel: Šotner Roman, prof. Ing., Ph.D.
Space compression involves a reduction of free space between optical elements by a thin device/material called a spaceplate[1], [2]. It gained importance recently due to novel approaches in the emerging field of non-local metamaterials. The issue of size reduction becomes more important for quasi-optical systems common to the terahertz and microwave frequency region where the physical size of the elements can be limiting factor in the design process. This project is focused on the research of the space compression structures for microwave frequencies. The main attention should be concentrated on the investigation and understanding of the fundamental limits of spaceplates and the development methods for their design. Further attention should be paid to the experimental characterization of these structures. References: [1] RESHEF, O., et al., An optic to replace space and its application towards ultra-thin imaging systems, Naturre Communication, 2021, vol. 12, art. no. 3512. [2] MRNKA, M., et al., Space squeezing optics: Performance limits and implementation at microwave frequencies. APL Photonics, 2022, vol. 7, no. 7, p. 1-7.
Školitel: Láčík Jaroslav, doc. Ing., Ph.D.