Detail předmětu

Modelování a identifikace

FEKT-MPC-MIDAk. rok: 2023/2024

Předmět je zaměřen na:
- metody identifikace dynamických systémů
- postupy při neparametrické a zejména při parametrické identifikaci
- on-line a off-line identifikaci
- spektrální estimaci, ocenění vlivu šumu a poruch při identifikaci

Jazyk výuky

čeština

Počet kreditů

6

Vstupní znalosti

Jsou požadovány znalosti na úrovni bakalářského studia.

Pravidla hodnocení a ukončení předmětu

Numerická cvičení- Max 15 bodů.  
Individuální projekt - Max. 15 bodů.
Závěrečná zkouška - Max. 70 bodů.

Podmínkou udělení zápočtu je získání alespoň 10 bodů ze cvičení a projektu a účast na cvičeních.

 


Vymezení kontrolované výuky a způsob jejího provádění stanoví každoročně aktualizovaná vyhláška garanta předmětu.

Učební cíle

Seznámit posluchače se základními technikami používanými pro identifikaci dynamických systémů a s jejich možnými úskalími. Získat představu o vlivu šumu působícího na soustavu na výsledky identifikace.
Absolvent předmětu je schopen
- používat neparametrické metody identifikace
- zvolit vhodný typ vstupního signálu pro identifikaci
- naprogramovat a použít základní metodu nejmenších čtverců
- vysvětlit, jak vzniká posunutí odhadu a jak se dá odstranit
- používat postupy pro zvýšení kvality identifikace při praktickém použití
- využívat univerzálního programového vybavení MATLAB-Simulink a jeho toolboxů pro identifikaci dynamických systémů

Základní literatura

Ljung, L.: System Identification, Theory for the User, Prentice Hall, 1999 (EN)
Soderstrom, T., Stoica, P.: System Identification. Prentice Hall International, 1989 (EN)

Doporučená literatura

Šimandl, M.: Identifikace systémů a filtrace. Západočeská univerzita v Plzni, 2001, ISBN 80-7082-170-1. (CS)
Noskievič, P.: Modelování a identifikace systémů. Montanex Ostrava 1999 (CS)
Fikar, M., Mikleš, J.: Identifikácia systémov. STU Bratislava 1999 (SK)
Isemrann, R., Munchhof, M. : Identification of Dynamic Systems - An Introduction with Applications. Springer 978-540-78878-2, 2011. (EN)

Elearning

Zařazení předmětu ve studijních plánech

  • Program MPC-KAM magisterský navazující 2 ročník, zimní semestr, povinně volitelný
  • Program N-AIŘ-P magisterský navazující 2 ročník, zimní semestr, povinný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Osnova

1. Úvod do problematiky identifikace dynamických systémů
2. Neparametrické metody identifikace, korelační metody, získávání frekvenční charakteristiky.
3. Vstupní signály, stupeň persistentního buzení, binární pseudonáhodná posloupnost.
4. Metoda nejmenších čtverců, odvození metody, geometrický význam, vlastnosti.
5. Modely dynamických systémů. ARX, ARMAX, ARARX, obecný model, pseudolineární regrese.
6. Rekurzivní MNČ. Numericky stabilní metody založené na odmocninové filtraci.
7. Metody pomocných proměnných. Metoda se zpožděnými pozorováními, metoda s pomocným modelem.
8. Metody založené na vybělení chyby predikce. Identifikace šumového modelu.
9. Praktické poznámky k identifikaci. Předzpracování signálů.
10. Identifikace pomocí neuronových sítí a fuzzy modelování.
11. Další přístupy k identifikaci.
12. Identifikace nelineárních dynamických systémů.
13. Zopakování poznatků.

Cvičení na počítači

26 hod., povinná

Vyučující / Lektor

Osnova

1. Lehký úvod do identifikace.
2. Identifikace parametrů z přechodové a impulsové charakteristiky.
3. Identifikace za pomocí korelačních metod, frekvenční analýza.
4. Spektrální analýza.
5. Vstupní signály pro identifikaci, Metoda nejmenších čtverců.
6. Průběžná metoda nejmenších čtverců.
7. Metody pomocných proměnných.
8. System Identification Toolbox.
9. Metody identifikace založené na vybělení chyby predikce.
10. Vylepšená frekvenční analýza, identifikace parametrů PMSM motoru.
11. Identifikace pomocí metody nejmenších čtverců.
12. Test + práce na projektu.
13. Reálná úloha - DC motor.

Elektronické učební texty

Podklady k přednáškám
nepmetid.pdf 1.84 MB
mnc.pdf 1.39 MB
rmnc.pdf 0.6 MB
extmnc.pdf 0.82 MB
nnm.pdf 0.92 MB
cli.pdf 1.38 MB
stochid.pdf 0.19 MB

Elearning