Detail předmětu

Matematika 1

FEKT-BPC-MA1Ak. rok: 2023/2024

Základní matematické pojmy. Funkce, inverzní funkce, posloupnosti. Vektorové prostory, základní pojmy, lineární kombinace vektorů,lineární závislost,nezávislost vektorů, báze, dimenze vektorového prostoru. Matice a determinanty. Soustavy lineárních rovnic a jejich řešení. Diferenciální počet funkcí jedné proměnné, limita, spojitost, derivace funkce. Derivace vyšších řádů, l´Hospitalovo pravidlo, průběh funkce. Integrální počet funkcí jedné proměnné, primitivní funkce, neurčitý integrál. Metody přímé integrace. Metoda per partes, substituční metoda, integrace některých elementárních funkcí. Určitý integrál a jeho aplikace. Nevlastní integrál. Nekonečné číselné řady, kritéria konvergence. Mocninné řady, Taylorova věta, Taylorova řada.

Jazyk výuky

čeština

Počet kreditů

7

Zajišťuje ústav

Vstupní znalosti

Studenti by měli umět pracovat s výrazy a elementárními funkcemi v rozsahu standardních požadavků k maturitě z matematiky, zejména by měli být schopni upravovat a zjednodušovat výrazy, řešit základní rovnice a nerovnice a nalézt definiční obor a obor hodnot funkce.

Pravidla hodnocení a ukončení předmětu

Během semestru je ve cvičení možné získat 30 bodů (10 bodů za písemky, 20 bodů za projekty a jejich úspěšnou obhajobu). Zápočet získá každý student, který dosáhne ve cvičení nejméně 10 bodů. V oddůvodněných případech může cvičící udělit zápočet i při nesplnění této podmínky. Zkouška probíhá písemnou formou a lze za ni získat maximálně 70 bodů.  Zkouška může probíhat prezenčně nebo distančně. Vymezení kontrolované výuky a způsob jejího provádění stanoví každoročně aktualizovaná vyhláška garanta předmětu.

 

Učební cíle

Předmět si klade za cíl seznámit posluchače se základními principy a metodami vyšší matematiky, bez kterých se při studiu elektrooborů nelze obejít. Důraz je kladen na zvládnutí praktického použití těchto metod k řešení konkrétních úloh, a to včetně využití moderního matematického software.
Student by po absolvování předmětu měli být schopen:

- rozhodnout, zda vektory jsou lineárně nezávislé a zda tvoří bázi vektorového prostoru;
- sčítat a násobit matice, spočítat determinant čtvercové matice do řádu 4x4, spočítat hodnost matice a inverzní matici;
- vyřešit soustavu lineárních rovnic;
- určovat definiční obory a načrtnout grafy elementárních funkcí;
- spočítat limity a asymptoty funkce jedné proměnné, používat L’Hospitalovo pravidlo na výpočet limit;
- derivovat funkce, určit rovnici tečny ke grafu funkce, napsat Taylorův polynom funkce v daném bodě;
- načrtnout graf funkce včetně extrémů, inflexních bodů a asymptot;
- integrovat pomocí základních metod integrování, jako jsou substituce, rozklad na parciální zlomky a per partes;
- počítat určitý integrál, použít substituci i per partes pro výpočet určitého integrálu z funkce;
- spočítat obsah plochy pomocí určitého integrálu, počítat nevlastní integrál;
- rozhodnout o konvergenci číselné řady, určit obor konvergence mocninné řady.

Elearning

Zařazení předmětu ve studijních plánech

  • Program BPC-TLI bakalářský 1 ročník, zimní semestr, povinný
  • Program BPC-MET bakalářský 1 ročník, zimní semestr, povinný
  • Program BPC-IBE bakalářský 1 ročník, zimní semestr, povinný
  • Program BPC-EKT bakalářský 1 ročník, zimní semestr, povinný

  • Program BPC-AUD bakalářský

    specializace AUDB-TECH , 1 ročník, zimní semestr, povinný
    specializace AUDB-ZVUK , 1 ročník, zimní semestr, povinný

Typ (způsob) výuky

 

Přednáška

52 hod., nepovinná

Vyučující / Lektor

Osnova

1. Základní matematické pojmy, funkce, posloupnosti.
2. Vektory - kombinace, závislost a nezávislost vektorů, báze a dimenze vektorového prostoru.
3. Matice a determinanty.
4. Soustavy lineárních rovnic a jejich řešení.
5. Diferenciální počet funkcí jedné proměnné, limita, spojitost, derivace funkce.
6. Derivace vyšších řádů, Taylorova věta.
7. L'Hospitalovo pravidlo, průběh funkce.
8. Integrální počet funkcí jedné proměnné, primitivní funkce, neurčitý integrál. Metody přímé integrace.
9. Metoda per partes, substituční metoda, integrace některých elementárních funkcí.
10. Určitý integrál a jeho aplikace.
11. Nevlastní integrál.
12. Nekonečné číselné řady, kritéria konvergence.
13. Mocninné řady. Taylorova řada.

Cvičení s počítačovou podporou

22 hod., povinná

Vyučující / Lektor

Osnova

1. Grafy elementárních funkcí, inverzní funkce, kuželosečky.
2. Matice, determinanty.
3. Řešení soustav lineárních rovnic.
4. Derivace funkce jedné proměnné.
5. Průběh funkce.
6. Výpočet neurčitého a určitého integrálu.
7. Nekonečné řady.

Projekt

4 hod., povinná

Vyučující / Lektor

Osnova

Vyučování bude probíhat formou samostatného projektu

Elektronické učební texty

Kolařová: Matematika 1 - Sbírka úloh
Matematika_1_sbirka.pdf 0.45 MB

Elearning