Detail předmětu

Matematické základy fuzzy logiky

FIT-IMFAk. rok: 2019/2020

Studenti si na začátku semestru vyberou z nabízených témat. Na pravidelných týdenních seminářích studenti vysvětlují předmětnou tématiku a následně se diskutuje o možných problémech. Na závěrečném semináři je provedeno celkové zhodnocení.

Jazyk výuky

čeština

Počet kreditů

5

Zajišťuje ústav

Výsledky učení předmětu

Absolvováním tohoto kurzu student získá hlubší náhled do vybrané partie matematiky (v závislosti na seminární skupině), bude schopný samostatně prezentovat nastudovanou problematiku a řešit s ní související úkoly.
Schopnost orientovat se v náročnějších matematických textech, schopnost sestavovat netriviální matematické důkazy.

Prerekvizity

Poznatky z předmětů "IDA - Diskrétní matematika" a "IMA - Matematická analýza".

Způsob a kritéria hodnocení

Aktivita na cvičeních (společné řešení problémů, 10 hodnocených cvičení) : 30 bodů.
Projekty: prezentace skupinové práce, 70 bodů.
Podmínky zápočtu:
Zisk alespoň 50 bodů z aktivit během semestru.

Učební cíle

Rozšířit okruh vědomostí z matematiky s důrazem na důkazy a na hledání řešení matematických problémů.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Aktivita na cvičeních (společné řešení problémů, 10 hodnocených cvičení) : 30 bodů.
Projekty: prezentace skupinové práce, 70 bodů.

Prerekvizity a korekvizity

Doporučená literatura

Baczynski, M., Jayaram, B., Fuzzy implications, Studies in Fuzziness and Soft Computing, Vol. 231, 2008.
Carlsson, Ch., Fullér, R., Fuzzy reasoning in decision making and optimization, Studies in Fuzziness and Soft Computing, Vol. 82, 2002.
Alsina, C., Frank, M.J., Schweizer, B., Assocative functions: Triangular Norms and Copulas, World Scientific Publishing Company, 2006.
Kolesárová, A., Kováčová, M., Fuzzy množiny a ich aplikácie, STU v Bratislave, 2004.
Trillas, E., Eciolaza, L, Fuzzy logic-An introductory course for engineering students, Studies in Fuzziness and Soft Computing, 2015.
Kolesárová, A., Kováčová, M., Fuzzy množiny a ich aplikácie, STU v Bratislave, 2004. (in Czech).

Zařazení předmětu ve studijních plánech

  • Program BIT bakalářský 2 ročník, zimní semestr, volitelný

  • Program IT-BC-3 bakalářský

    obor BIT , 2 ročník, zimní semestr, volitelný

Typ (způsob) výuky

 

Projekt

26 hod., povinná

Vyučující / Lektor

Osnova

  1. Triangulární normy, třída archimedovských t-norem
  2. Triangulární normy, konstrukce spojitých t-norem
  3. Triangulární normy, konstrukce nespojitých t-norem
  4. Triangulární konormy
  5. Fuzzy negace a jejich vlastnosti
  6. Implikace ve fuzzy logikách
  7. Agregační operátory, průměry
  8. Agregační operatory, aplikace
  9. Fuzzy relace, podobnost, fuzzy rovnost
  10. Fuzzy preferenční struktury

Cvičení s počítačovou podporou

26 hod., povinná

Vyučující / Lektor

Osnova

  1. Od klasické logiky k fuzzy logice
  2. Modelování vágních pojmů pomocí fuzzy množin
  3. Základní operace s fuzzy množinami
  4. Princip rozšíření
  5. Triangulární normy, základní pojmy, algebraické vlastnosti
  6. Triangulární normy, konstrukce, generátory
  7. Triangulární konormy, základní pojmy a vlastnosti
  8. Negace ve fuzzy logikách
  9. Implikace ve fuzzy logikách
  10. Agregační operátory, základní vlastnosti
  11. Agregační operátory, aplikace
  12. Fuzzy relace
  13. Fuzzy preferenční struktury

Elektronické učební texty

Hliněná: Projekty
bonus22.pdf 0.1 MB
Študentské prezentácie
IMF_-_5_T-konormy-2.pdf 1.23 MB
non_continuous_t-norms-1.pdf 0.8 MB
Fuzzy_negace(1).pptx 0.16 MB
fuzzyCisla.pptx 2.26 MB
IMF-generovane-implikatory.pdf 0.52 MB