Detail předmětu

Pokročilá matematika

FIT-IAMAk. rok: 2019/2020

Předmět navazuje na povinné matematické předměty bakalářského studia. Práce s matematickým aparátem je demonstrována spolu s prohloubením znalostí oblastí matematiky úzce souvisejících s informatikou a s ukázkou jejich aplikací v informatice. Jedná se zejména o teorii čísel a její aplikaci v kryptografii; základy teorie množin a logiky, vybrané logické systémy, techniky a rozhodovací procedury s aplikací např. v databázích či softwarovém inženýrství; teorii svazů, pevných bodů, a jejich aplikace ve verifikaci; pravděpodobnost a statistiku a aplikace v analýze pravděpodobnostních systémů a umělé inteligenci.

Jazyk výuky

čeština

Počet kreditů

5

Výsledky učení předmětu

Schopnost matematické formulace, řešení problémů pomocí matematického aparátu, zejména dokazování, prohloubení a procvičení základních matematických pojmů, přehled o některých pro informatiku stěžejních oblastech matematiky a jejich aplikacích v informatice.
Rozvinutí schopnosti exaktně se vyjadřovat a používat matematický aparát.

Prerekvizity

Základní pojmy o relacích, množinách, základy výrokové a predikátové logiky, základy algebry, základy konečných automatů.

Způsob a kritéria hodnocení

Dva testy - v polovině a v závěru semestru (25 bodů za test), aktivita na cvičeních (5 bodů za každé cvičení).
Podmínky zápočtu:
Získání 50 ze 100 možných bodů, udělovaných za aktivity v průběhu cvičení a docházku (50 bodů), průběžné testy (50 bodů).

Učební cíle

  • Prohloubit schopnosti aplikace matematického aparátu ve vyjadřování, formulaci a řešení problémů a posílit schopnosti exaktního vyjadřování a myšlení obecně,
  • rozvinout některé partie matematiky s těsnou vazbou na informatiku a ukázat souvislost s informatikou,
  • usnadnit studium matematických předmětů v navazujícím magisterském studiu,
  • přesvědčit se na vlastní oči, jak komplikovaná matematika může vést k velmi užitečným algoritmům a nástrojům.

Prerekvizity a korekvizity

Základní literatura

A.R. Bradley, Z. Manna. The Calculus of Computation. Springer, 2007.
D. P. Bertsekas, J. N. Tsitsiklis. Introduction to Probability, Athena Scientific, 2008.
M. Huth, M. Ryan. Logic in Computer Science. Modelling and Reasoning about Systems. Cambridge University Press, 2004.

Doporučená literatura

G. Chartrand, A. D. Polimeni, P. Zhang. Mathematical Proofs: A Transition to Advanced Mathematics, 2013
A. Doxiadis, C. Papadimitriou. Logicomix: An Epic Search for Truth. Bloomsbury, 2009.
B. Balcar, P. Štěpánek. Teorie množin. Academia, 2005.
C. M. Grinstead, J. L. Snell. Introduction to probability. American Mathematical Soc., 2012.
Steven Roman. Lattices and Ordered Sets, Springer-Verlag New York, 2008.
R. Smullyan. First-Order Logic. Dover, 1995.

Zařazení předmětu ve studijních plánech

  • Program BIT bakalářský 2 ročník, letní semestr, volitelný

  • Program IT-BC-3 bakalářský

    obor BIT , 2 ročník, letní semestr, volitelný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Osnova

  1. Výroková logika. Syntaxe, sémantika. Důkazové metody pro výrokovou logiku: metoda sémantických tabulek, přirozená dedukce, rezoluce. (Ondřej Lengál)
  2. Predikátová logika. Syntaxe, sémantika prvořádové predikátové logiky. Důkazové metody pro predikátovou logiku: metoda sémantických tabulek, přirozená dedukce. (Ondřej Lengál)
  3. Predikátová logika. Craigova interpolace. Důležité teorie. Nerozhodnutelnost. Predikátová logika vyššího řádu. (Ondřej Lengál)
  4. Logické rozhodovací procedury: Klasické rozhodovací procedury pro aritmetiku nad celými a racionálními čísly. (Lukáš Holík)
  5. Automatové rozhodovací procedury pro aritmetiku a WS1S. (Lukáš Holík)
  6. Rozhodovací procedury pro kombinované teorie. (Lukáš Holík)
  7. Axiomy teorie množin, axiom výběru. Spočetné a nespočetné množiny, kardinální čísla. (Dana Hliněná)
  8. Aplikace teorie čísel v kryptografii. (Dana Hliněná)
  9. Teorie čísel: prvočísla, dělitelnost, kongruence, Fundamentální věta aritmetiky, Malá Fermatova věta, Eulerova funkce. (Dana Hliněná)
  10. Pokročilá kombinatorika: Princip inkluze a exkluze, Dirichletův princip, vybrané kombinatorické teorémy. (Milan Češka)
  11. Podmíněná pravděpodobnost, základy statistické inference, Bayesovské sítě. (Milan Češka)
  12. Náhodné procesy: Markovův a Poissonův proces. Aplikace v informatice: kvantitativní analýza, analýza výkonnosti. (Milan Češka)

Cvičení odborného základu

18 hod., povinná

Vyučující / Lektor

Osnova

  1. Důkazové metody pro výrokovou logiku.
  2. Důkazové metody pro predikátovou logiku.
  3. Teorie a důkazy v nich.
  4. Rozhodovací procedury.
  5. Počítačové cvičení 1.
  6. Automatové rozhodovací procedury a kombinované teorie.
  7. Počítačové cvičení 2.
  8. Důkazy v teorii množin, Cantorova diagonalizace, párování, Hilbertův hotel.
  9. Prvočísla a kryptografie, RSA a DSA šifry.
  10. Důkazové úlohy v teorii čísel, Čínská věta o zbytcích.
  11. Důkazové metody v kombinatorice.
  12. Podmíněná pravděpodobnost v praxi, použití statistické inference.

Cvičení na počítači

8 hod., povinná

Vyučující / Lektor

Osnova

  1. Důkazy korektnosti programů v systému VCC.
  2. Solvery - SAT, SMT.
  3. Solvery - Mona, Vampire.
  4. Analýza pravděpodobnostních systémů, nástroj PRISM.