Detail předmětu

Mechanika kompozitů

FSI-RMOAk. rok: 2011/2012

Základní pojmy, klasifikace kompozitů. Vláknové kompozity. Mechanické vlastnosti používaných vláken a materiálů matric. Tuhost dlouhovláknových kompozitů v podélném a příčném směru - směšovací pravidlo. Pevnost v podélném a příčném směru. Kritický objem vláken, minimální objem.
Krátkovláknové kompozity, teorie přenosu zatížení. Přenosová a kritická délka. Tuhost a pevnost. Ortotropické vlastnosti jako důsledek struktury vláknových kompozitů, hlavní osy ortotropie. Hookeův zákon anisotropického materiálu, ortotropického materiálu a transversálně ortotropického materiálu v hlavním souřadnicovém systému. Hookeův zákon pro rovinný vláknový kompozit v obecném směru. Podmínky pevnosti 2-D vláknového kompozitu. Konstitutivní vztahy u laminátové stěny a desky, napjatost a deformace. Aplikace na tenkostěnnou laminátovou tlakovou nádobu, pevnostní kontrola.

Jazyk výuky

čeština

Počet kreditů

5

Výsledky učení předmětu

Získání poznatků o směrovém chování kompozitních materiálu a metodách
používaných pro napěťovou a deformační analýzu a pevnostní kontrolu
kompozitních materiálů a vybraných konstrukcí.

Prerekvizity

Znalost základních pojmů pružnosti a pevnosti (napětí, hlavní napětí, deformace, přetvoření, obecný Hookeův zákon), membránová teorie skořepin. Základy MKP a elementární znalost práce se systémem ANSYS.

Plánované vzdělávací činnosti a výukové metody

Metody vyučování závisejí na způsobu výuky a jsou popsány článkem 7 Studijního a zkušebního řádu VUT.

Způsob a kritéria hodnocení

Zápočet se uděluje na základě úspěšného obhájení závěrečného zápočtového
projektu, majícího charakter výpočtového modelování mechanických
vlastností kompozitního materiálu definované struktury pomocí programu
metody konečných prvků ANSYS.
Zkouška je kombinovaná a obsahuje písemnou část, formou průřezového
testu a následný ústní pohovor.

Učební cíle

Cílem předmětu je získání základních informací a poznatků o mechanickém
chování kompozitních materiálů se zaměřením zejména na kompozity vláknové.
Na základě známých mechanických vlastností složek a geometrické struktury
se určují mechanické a pevnostní vlastnosti kompozitu. Studenti se
seznámí s metodami používanými ke stanovení napjatosti, deformace
a bezpečnosti kompozitních materiálů a typických konstrukcí
z kompozitních materiálů.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Účast na cvičeních je vyžadována. Omluvená neúčast se nahrazuje samostatným vypracováním úloh podle pokynů vyučujícího.

Základní literatura

Agarwal,B.D., Broutman,L.J.: Vláknové kompozity, SNTL, Praha, 1987
Jones,R.M.: Mechanics of composite materials. Hemisphere Publishing Corporation, New York, 1975
Krishan K. Chawla: Composite materials. Science and Engineering. Springer-Verlag, New York, Berlin, Heidelberg, 1998

Zařazení předmětu ve studijních plánech

  • Program M2A-P magisterský navazující

    obor M-IMB , 2. ročník, zimní semestr, povinný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Osnova

1.Definice a základní pojmy. Klasifikace kompozitních materiálů dle struktury a materiálu složek.
2.Mechanické vlastnosti typických vláken a matricových materiálů. Chemické složení, způsob výroby.
3.Jednosměrový dlouhovláknový kompozit. Modul pružnosti v tahu a pevnost v podélném směru.
Kritický a minimální objem vláken.
4.Jednosměrový dlouhovláknový kompozit. Modul pružnosti a pevnost v příčném směru. Modul pružnosti ve smyku a Poissonovo číslo.
5.Mechanismy poškozování dlouhovláknových kompozitů při podélném a příčném namáhání v tahu a tlaku.
6.Krátkovláknový jednosměrový kompozit. Teorie přenosu zatížení. Průběh napětí ve vláknu. Přenosová a kritická délka.
7.Krátkovláknový jednosměrový kompozit. Modul pružnosti v tahu v příčném a podélném směru. Pevnost v podélném a příčném směru.
8.Modelování mechanických vlastností kompozitů v rámci mechaniky kontinua. Hlavni ortotropické osy.
9.Hookeův zákon pro isotropický, ortotropický a transversálně ortotropický materiál v hlavních ortotropických směrech.
10.Hookeův zákon pro rovinný ortotropický materiál v obecném směru. Směrová matice tuhosti. Vyvážená orientovaná dvojvrstva.
11.Podmínky pevnosti rovinného kompozitního materiálu maximálního napětí, maximálního přetvoření a Tsai-Hillova energetická podmínka.
12.Konstitutivní vztahy pro složenou laminátovou stěnu a desku.
13.Výpočet napětí a pevnostní kontrola u válcové laminátové stěny.

Cvičení s počítačovou podporou

13 hod., povinná

Vyučující / Lektor

Osnova

1.MKP simulace tahové zkoušky vláknového kompozitu v podélném směru.
2.MKP simulace tahové zkoušky vláknového kompozitu v příčném směru.
3.MKP simulace zkoušky smykem vláknového kompozitu.
4.MKP simulace tahové zkoušky kompozitu v rovině příčného řezu.
5.Určení součinitele koncentrace napětí při zatíření kompozitu napříč vláken.
6.MKP simulace tahové zkoušky kompozitu šikmo ke směru vláken.
7.Praktická ukázka výroby a zkoušek kompozitů.
8.MKP simulace zkoušky kompozitů ohybem.
9.Použití modelu ortotropního materiálu v ANSYSu, zadávání elastických konstant.
10.Simulace základních mechanických zkoušek pomocí ortotropního modelu materiálu.
11.Modelování obecného tělesa z ortotropního materiálu.
12.Zadání semestrální práce.
13.Kontrola semestrální práce, zápočet.

Elektronické učební texty

Vrbka, J.; Mechanika kompozitů; ÚMTMB, FSI, VUT v Brně; 2014 (cs)