Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
ŠPLÍCHAL, B.; LEHKÝ, D.
Originální název
Study on optimal setup of the ANN-aided Aimed multilevel sampling optimization method
Anglický název
Druh
Stať ve sborníku mimo WoS a Scopus
Originální abstrakt
This paper deals with the application of Aimed multilevel sampling metaheuristic optimization method supported by an artificial neural network. The main aim is to study the optimal parameter settings of this method for damage identification on a two-span steel truss using a limited number of simulations. The convergence rate is tested as a function of the number of simulations and the choice of the parameter that controls the resizing of the design space. The results are summarized and discussed with respect to their practical applicability in bridge damage identification using structural health monitoring data.
Anglický abstrakt
Klíčová slova
Aimed multilevel sampling, artificial neural network, damage identification, model updating
Klíčová slova v angličtině
Autoři
Vydáno
01.04.2024
Nakladatel
ECON publishing, s.r.o.
Místo
Brno
ISBN
978-80-86433-83-7
Kniha
Proceedings 26th International Scientific Conference Of Civil Engineering
Strany počet
5
URL
https://juniorstav.fce.vutbr.cz/wp-content/uploads/2024/04/03_DOI_24033-FINAL-Bohumil-splichal.pdf
Plný text v Digitální knihovně
http://hdl.handle.net/
BibTex
@inproceedings{BUT187455, author="Bohumil {Šplíchal} and David {Lehký}", title="Study on optimal setup of the ANN-aided Aimed multilevel sampling optimization method", booktitle="Proceedings 26th International Scientific Conference Of Civil Engineering", year="2024", pages="5", publisher="ECON publishing, s.r.o.", address="Brno", doi="10.13164/juniorstav.2024.24033", isbn="978-80-86433-83-7", url="https://juniorstav.fce.vutbr.cz/wp-content/uploads/2024/04/03_DOI_24033-FINAL-Bohumil-splichal.pdf" }