Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
LEHKÝ, D.; PAN, L.; NOVÁK, D.; CAO, M.; ŠOMODÍKOVÁ, M.; SLOWIK, O.
Originální název
A comparison of sensitivity analyses for selected prestressed concrete structures
Anglický název
Druh
Článek WoS
Originální abstrakt
Three sensitivity analysis methods are employed to achieve the optimum selection of the dominant random variables of selected concrete structures. The first of these methods uses the nonparametric rank‐order statistical correlation between the basic random input variables and the structural response output variable. The second is neural network ensemble‐based sensitivity analysis and the last of them is sensitivity analysis in terms of coefficient of variation. All of the methods were utilized and compared for two selected concrete structures: a prestressed concrete bridge made of MPD girders, and T‐shaped prestressed concrete roof girder. The obtained information was used to set up a stochastic model and response surfaces in an optimum manner and was employed in the subsequent determination of selected uncertain design parameters followed by load‐bearing capacity and reliability assessment.
Anglický abstrakt
Klíčová slova
Artificial neural network, prestressed concrete, sensitivity analysis, structural reliability, surrogate modeling
Klíčová slova v angličtině
Autoři
Rok RIV
2019
Vydáno
01.02.2019
Nakladatel
ERNST & SOHN, ROTHERSTRASSE 21, BERLIN, DEUTSCHLAND 10245, GERMANY
Místo
Berlin
ISSN
1464-4177
Periodikum
Structural Concrete
Svazek
20
Číslo
1
Stát
Spolková republika Německo
Strany od
38
Strany do
51
Strany počet
14
URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/suco.201700291
Plný text v Digitální knihovně
http://hdl.handle.net/
BibTex
@article{BUT149533, author="David {Lehký} and Lixia {Pan} and Drahomír {Novák} and Maosen {Cao} and Martina {Sadílková Šomodíková} and Ondřej {Slowik}", title="A comparison of sensitivity analyses for selected prestressed concrete structures", journal="Structural Concrete", year="2019", volume="20", number="1", pages="38--51", doi="10.1002/suco.201700291", issn="1464-4177", url="https://onlinelibrary.wiley.com/doi/abs/10.1002/suco.201700291" }