Detail publikačního výsledku

COMPARISON OF REGRESSION AND FUZZY ESTIMATES ON FIELD OIL DATA

ŽÁK, L.; VALIŠ, D.

Originální název

COMPARISON OF REGRESSION AND FUZZY ESTIMATES ON FIELD OIL DATA

Anglický název

COMPARISON OF REGRESSION AND FUZZY ESTIMATES ON FIELD OIL DATA

Druh

Článek Scopus

Originální abstrakt

The paper is to apply selected fuzzy and regression methods to analysing oil field data. The research is aimed on comparison and on finding the dependence between Fe (AOWP) particles occurrence on operating and calendar time. We use regression and fuzzy method on finding the dependence and we would like to use the outcomes for maintenance optimisation. That is the Condition Based Maintenance of the observed systems which is supposed to be supported by this approaches.

Anglický abstrakt

The paper is to apply selected fuzzy and regression methods to analysing oil field data. The research is aimed on comparison and on finding the dependence between Fe (AOWP) particles occurrence on operating and calendar time. We use regression and fuzzy method on finding the dependence and we would like to use the outcomes for maintenance optimisation. That is the Condition Based Maintenance of the observed systems which is supposed to be supported by this approaches.

Klíčová slova

fuzzy logic, fuzzy inference system, regression analysis, tribo-diagnostics, field data.

Klíčová slova v angličtině

fuzzy logic, fuzzy inference system, regression analysis, tribo-diagnostics, field data.

Autoři

ŽÁK, L.; VALIŠ, D.

Rok RIV

2016

Vydáno

23.06.2015

Kniha

21st International Conference on Soft Computing - MENDEL 2015

ISSN

1803-3814

Periodikum

Mendel Journal series

Svazek

2015

Číslo

1

Stát

Česká republika

Strany od

85

Strany do

90

Strany počet

6

Plný text v Digitální knihovně

BibTex

@article{BUT114739,
  author="Libor {Žák} and David {Vališ}",
  title="COMPARISON OF REGRESSION AND FUZZY ESTIMATES ON FIELD OIL DATA",
  journal="Mendel Journal series",
  year="2015",
  volume="2015",
  number="1",
  pages="85--90",
  issn="1803-3814"
}