Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
LEHKÝ, D.; ŠOMODÍKOVÁ, M.
Originální název
Small-sample artificial neural network based response surface method for reliability analysis of concrete bridges
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
In the paper, an artificial neural network based response surface method (ANN-RSM) in combination with a small-sample simulation technique is proposed. ANN as powerful parallel computational system is used for approximation of limit state function (LSF). Thanks to its ability to generalize it is efficient to fit LSF even with small number of simulations compared to polynomial RSM. Efficiency is emphasized by utilization of stratified simulation for selection of ANN training set elements. Proposed method is tested using simple limit state function taken from literature as well as employed for reliability and load-bearing capacity assessment of concrete bridge within the framework of fully probabilistic analysis. Results are compared with those obtained by other reliability methods.
Anglický abstrakt
Klíčová slova
Artificial neural network, Response surface method, Probability of failure, Reliability index.
Klíčová slova v angličtině
Autoři
Rok RIV
2016
Vydáno
01.01.2015
Nakladatel
Taylor & Francis Group
Místo
London, UK
ISBN
978-1-138-00120-6
Kniha
Proceedings of the Fourth International Symposium on Life-Cycle Civil Engineering (IALCCE 2014) – Life-Cycle of Structural Systems: Design, Assessment, Maintenance and Management
Strany od
1903
Strany do
1909
Strany počet
7
Plný text v Digitální knihovně
http://hdl.handle.net/
BibTex
@inproceedings{BUT112148, author="David {Lehký} and Martina {Sadílková Šomodíková}", title="Small-sample artificial neural network based response surface method for reliability analysis of concrete bridges", booktitle="Proceedings of the Fourth International Symposium on Life-Cycle Civil Engineering (IALCCE 2014) – Life-Cycle of Structural Systems: Design, Assessment, Maintenance and Management", year="2015", pages="1903--1909", publisher="Taylor & Francis Group", address="London, UK", isbn="978-1-138-00120-6" }