Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
VÍTOVEC, J.
Originální název
Some generalizations in theory of rapid variation on time scales and its applications in dynamic equations
Anglický název
Druh
Článek recenzovaný mimo WoS a Scopus
Originální abstrakt
In this paper we introduce a new definition of rapidly varying function on time scales. Unlike the recently studied concept of rapid variation, this new concept is more general and naturally extends and complements the already established class of rapidly varying functions. We prove some of its properties and show the relation between this new type of definition and recently introduced classical Karamata type of definition of rapid variation on time scales. Note that the theory of rapid variation on time scales unifies the existing theories from continuous and discrete cases. As an application, we establish necessary and sufficient conditions for all positive solutions of the second order half-linear dynamic equations on time scales to be rapidly varying.
Anglický abstrakt
Klíčová slova
Rapidly varying function, regularly varying function, regularly bounded function, time scale, half-linear dynamic equation.
Klíčová slova v angličtině
Autoři
Rok RIV
2014
Vydáno
15.01.2013
ISSN
1337-6365
Periodikum
Journal of Applied Mathematics
Svazek
5 (2012)
Číslo
2
Stát
Slovenská republika
Strany od
139
Strany do
146
Strany počet
8
BibTex
@article{BUT97750, author="Jiří {Vítovec}", title="Some generalizations in theory of rapid variation on time scales and its applications in dynamic equations", journal="Journal of Applied Mathematics", year="2013", volume="5 (2012)", number="2", pages="139--146", issn="1337-6365" }