Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
POLOK, L.; SMRŽ, P.
Originální název
Fast Linear Algebra on GPU
Anglický název
Druh
Stať ve sborníku mimo WoS a Scopus
Originální abstrakt
GPUs have been successfullyused for acceleration of many mathematical functions and libraries. A commonlimitation of those libraries is the minimal size of primitives being handled,in order to achieve a significant speedup compared to their CPU versions. Theminimal size requirement can prove prohibitive for many applications. It can beloosened by batching operations in order to have sufficient amount of data toperform the calculation maximally efficiently on the GPU. A fast OpenCLimplementation of two basic vector functions - vector reduction and vectorscaling - is described in this paper. Its performance is analyzed by runningbenchmarks on two of the most common GPUs in use - Tesla and Fermi GPUs fromNVIDIA. Reported experimental results show that our implementation significantlyoutperforms the current state-of-the-art GPU-based basic linear algebra libraryCUBLAS.
Anglický abstrakt
Klíčová slova
GPU; parallel reduction; linear algebra;BLAS; OpenCL; CUDA
Klíčová slova v angličtině
Autoři
Rok RIV
2013
Vydáno
25.06.2012
Nakladatel
IEEE Computer Society
Místo
Liverpool
ISBN
978-0-7695-4749-7
Kniha
IEEE conference proceedings
Strany od
1
Strany do
6
Strany počet
URL
https://www.fit.vut.cz/research/publication/10039/
BibTex
@inproceedings{BUT96982, author="Lukáš {Polok} and Pavel {Smrž}", title="Fast Linear Algebra on GPU", booktitle="IEEE conference proceedings", year="2012", pages="1--6", publisher="IEEE Computer Society", address="Liverpool", isbn="978-0-7695-4749-7", url="https://www.fit.vut.cz/research/publication/10039/" }
Dokumenty
hpcc_ipolok_smrz_submitted_IGA_nochg