Detail publikačního výsledku

Stability regions for linear fractional differential systems and their discretizations

ČERMÁK, J.; KISELA, T.; NECHVÁTAL, L.

Originální název

Stability regions for linear fractional differential systems and their discretizations

Anglický název

Stability regions for linear fractional differential systems and their discretizations

Druh

Článek recenzovaný mimo WoS a Scopus

Originální abstrakt

This paper concerns with basic stability properties of linear autonomous fractional differential and difference systems involving derivative operators of the Riemann-Liouville type. We derive stability regions for special discretizations of the studied fractional differential systems including a precise description of their asymptotics.

Anglický abstrakt

This paper concerns with basic stability properties of linear autonomous fractional differential and difference systems involving derivative operators of the Riemann-Liouville type. We derive stability regions for special discretizations of the studied fractional differential systems including a precise description of their asymptotics.

Klíčová slova

Fractional differential system; fractional difference system; asymptotic stability; Laplace transform

Klíčová slova v angličtině

Fractional differential system; fractional difference system; asymptotic stability; Laplace transform

Autoři

ČERMÁK, J.; KISELA, T.; NECHVÁTAL, L.

Rok RIV

2014

Vydáno

15.02.2013

ISSN

0096-3003

Periodikum

APPLIED MATHEMATICS AND COMPUTATION

Svazek

219

Číslo

12

Stát

Spojené státy americké

Strany od

7012

Strany do

7022

Strany počet

11

BibTex

@article{BUT95733,
  author="Jan {Čermák} and Tomáš {Kisela} and Luděk {Nechvátal}",
  title="Stability regions for linear fractional differential systems and their discretizations",
  journal="APPLIED MATHEMATICS AND COMPUTATION",
  year="2013",
  volume="219",
  number="12",
  pages="7012--7022",
  issn="0096-3003"
}