Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
BRANČÍK, L.; KOLÁŘOVÁ, E.
Originální název
Stochastic Differential Equations Approach in the Analysis of MTLs with Randomly Varied Parameters
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
The paper deals with a technique for the analysis of multiconductor transmission lines (MTL) with randomly varied parameters, which is based on a theory of stochastic differential equations (SDE). Sets of stochastic trajectories are computed as voltage or current responses, accompanied by relevant sample means and confidence intervals. The MTL model is based on a cascade connection of generalized RLGC networks, terminating circuits are replaced by their generalized Thévenin equivalents. To develop model equations a state-variable method is applied, and then a corresponding vector SDE is formulated. Finally, a stochastic implicit Euler numerical technique is used for the numerical solution being consistent with Itô stochastic calculus. All the computation were done in the MATLAB language, and deterministic responses are also stated via a numerical inverse Laplace transforms (NILT) procedure to verify the results.
Anglický abstrakt
Klíčová slova
stochastic differential equation, Itô calculus, multiconductor transmission line, state variable, Matlab
Klíčová slova v angličtině
Autoři
Rok RIV
2013
Vydáno
09.12.2012
Nakladatel
IEEE CAS
Místo
Sevilla, Spain
ISBN
978-1-4673-1259-2
Kniha
Proceedings of 19th IEEE International Conference on Electronics, Circuits, and Systems ICECS2012
Strany od
725
Strany do
728
Strany počet
4
BibTex
@inproceedings{BUT94996, author="Lubomír {Brančík} and Edita {Kolářová}", title="Stochastic Differential Equations Approach in the Analysis of MTLs with Randomly Varied Parameters", booktitle="Proceedings of 19th IEEE International Conference on Electronics, Circuits, and Systems ICECS2012", year="2012", pages="725--728", publisher="IEEE CAS", address="Sevilla, Spain", isbn="978-1-4673-1259-2" }