Detail publikačního výsledku

Stability and asymptotic properties of a linear fractional difference equation

ČERMÁK, J.; KISELA, T.; NECHVÁTAL, L.

Originální název

Stability and asymptotic properties of a linear fractional difference equation

Anglický název

Stability and asymptotic properties of a linear fractional difference equation

Druh

Článek recenzovaný mimo WoS a Scopus

Originální abstrakt

This paper discusses qualitative properties of the two-term linear fractional difference equation with respect to its stability and asymptotics. Some consequences to the theory of Volterra difference equations are presented as well.

Anglický abstrakt

This paper discusses qualitative properties of the two-term linear fractional difference equation with respect to its stability and asymptotics. Some consequences to the theory of Volterra difference equations are presented as well.

Klíčová slova

Fractional difference equation; Riemann-Liouville difference operator; Volterra equation; stability; asymptotic behaviour

Klíčová slova v angličtině

Fractional difference equation; Riemann-Liouville difference operator; Volterra equation; stability; asymptotic behaviour

Autoři

ČERMÁK, J.; KISELA, T.; NECHVÁTAL, L.

Rok RIV

2013

Vydáno

23.07.2012

Nakladatel

Springer Nature

ISSN

1687-1847

Periodikum

Advances in Difference Equations

Svazek

2012

Číslo

1

Stát

Spojené státy americké

Strany od

1

Strany do

14

Strany počet

14

URL

Plný text v Digitální knihovně

BibTex

@article{BUT93931,
  author="Jan {Čermák} and Tomáš {Kisela} and Luděk {Nechvátal}",
  title="Stability and asymptotic properties of a linear fractional difference equation",
  journal="Advances in Difference Equations",
  year="2012",
  volume="2012",
  number="1",
  pages="1--14",
  doi="10.1186/1687-1847-2012-122",
  issn="1687-1847",
  url="https://advancesindifferenceequations.springeropen.com/articles/10.1186/1687-1847-2012-122"
}

Dokumenty