Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
ZATOČILOVÁ, J.; LUKÁČOVÁ, M.
Originální název
Finite volume schemes for multi-dimensional hyperbolic systems based on the use of bicharacteristics
Anglický název
Druh
Článek recenzovaný mimo WoS a Scopus
Originální abstrakt
In this paper we present recent results for the bicharacteristic based finite volume schemes, the so-called finite volume evolution Galerkin (FVEG) schemes. These methods were proposed to solve multi-dimensional hyperbolic conservation laws. They combine the usually conflicting design objectives of using the conservation form and following the characteristics, or bicharacteristics. This is realized by combining the finite volume formulation with approximate evolution operators, which use bicharacteristics of multi-dimensional hyperbolic system. In this way all of the infinitely many directions of wave propagation are taken into account. The main goal of this paper is to present a self contained overview on the recent results. We study the $L^1$-stability of the finite volume schemes obtained by different approximations of the flux integrals. Several numerical experiments presented in the last section confirm robustness and correct multi-dimensional behaviour of the FVEG methods.
Anglický abstrakt
Klíčová slova
multidimensional finite volume methods, bicharacteristics, hyperbolic systems, wave equation, Euler equations
Klíčová slova v angličtině
Autoři
Rok RIV
2013
Vydáno
01.06.2006
ISSN
0862-7940
Periodikum
Applications of Mathematics
Svazek
51
Číslo
3
Stát
Česká republika
Strany od
205
Strany do
228
Strany počet
23
BibTex
@article{BUT88758, author="Jitka {Zatočilová} and Mária {Lukáčová}", title="Finite volume schemes for multi-dimensional hyperbolic systems based on the use of bicharacteristics", journal="Applications of Mathematics", year="2006", volume="51", number="3", pages="205--228", issn="0862-7940" }