Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
VOŘECHOVSKÝ, M.
Originální název
Correlation control in small sample Monte Carlo type simulations II: Analysis of estimation formulas, random correlation and perfect uncorrelatedness
Anglický název
Druh
Článek recenzovaný mimo WoS a Scopus
Originální abstrakt
This paper presents a number of theoretical and numerical results regarding correlation coefficients and two norms of correlation matrices in relation to correlation control in Monte Carlo type sampling and the designs of experiments. The paper studies estimation formulas for Pearson linear, Spearman and Kendall rank-order correlation coefficients and formulates the lower bounds on the performance of correlation control techniques such as the one presented in the companion paper Part I. In particular, probabilistic distributions of the two norms of correlation matrices defined in Part I are delivered for an arbitrary sample size and number of random variables in the case when the sampled values are ordered randomly. Next, an approximate number of designs with perfect uncorrelatedness is estimated based on the distribution of random correlation coefficients. It is shown that a large number of designs exist that perfectly match the unit correlation matrix.
Anglický abstrakt
Klíčová slova
Monte Carlo, random correlation
Klíčová slova v angličtině
Autoři
Rok RIV
2013
Vydáno
08.02.2012
Místo
Spojené království Velké Británie a Severního Irska
ISSN
0266-8920
Periodikum
PROBABILISTIC ENGINEERING MECHANICS
Svazek
27
Číslo
1
Stát
Strany od
Strany do
16
Strany počet
BibTex
@article{BUT88448, author="Miroslav {Vořechovský}", title="Correlation control in small sample Monte Carlo type simulations II: Analysis of estimation formulas, random correlation and perfect uncorrelatedness", journal="PROBABILISTIC ENGINEERING MECHANICS", year="2012", volume="27", number="1", pages="1--16", issn="0266-8920" }