Detail publikačního výsledku

The stability analysis of a discretized pantograph equation

KUNDRÁT, P.; JÁNSKÝ, J.

Originální název

The stability analysis of a discretized pantograph equation

Anglický název

The stability analysis of a discretized pantograph equation

Druh

Článek recenzovaný mimo WoS a Scopus

Originální abstrakt

The paper deals with a difference equation arising from the scalar pantograph equation via the backward Euler discretization. A case when the solution tends to zero but after reaching a certain index it loses this tendency is discussed. We analyse this problem and estimate the value of such an index. Furthermore, we show that the utilized proof technique enables us to investigate some other numerical formulae, too.

Anglický abstrakt

The paper deals with a difference equation arising from the scalar pantograph equation via the backward Euler discretization. A case when the solution tends to zero but after reaching a certain index it loses this tendency is discussed. We analyse this problem and estimate the value of such an index. Furthermore, we show that the utilized proof technique enables us to investigate some other numerical formulae, too.

Klíčová slova

pantograph equation, numerical solution, stability

Klíčová slova v angličtině

pantograph equation, numerical solution, stability

Autoři

KUNDRÁT, P.; JÁNSKÝ, J.

Rok RIV

2012

Vydáno

08.12.2011

ISSN

0862-7959

Periodikum

Mathematica Bohemica

Svazek

136

Číslo

4

Stát

Česká republika

Strany od

385

Strany do

394

Strany počet

10

BibTex

@article{BUT75400,
  author="Petr {Tomášek} and Jiří {Jánský}",
  title="The stability analysis of a discretized pantograph equation",
  journal="Mathematica Bohemica",
  year="2011",
  volume="136",
  number="4",
  pages="385--394",
  issn="0862-7959"
}