Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
BAŠTINEC, J.; BEREZANSKY, L.; DIBLÍK, J.; ŠMARDA, Z.
Originální název
A final result on the oscillation of solutions of the linear discrete delayed equation \Delta x(n)=-p(n)x(n-k) with a positive coefficient
Anglický název
Druh
Článek recenzovaný mimo WoS a Scopus
Originální abstrakt
A linear $(k+1)$th-order discrete delayed equation $\Delta x(n)=-p(n)x(n-k)$ where $p(n)$ is a positive sequence is considered for $n\to\infty$. This equation is known to have a positive solution if the sequence $p(n)$ satisfies an inequality. Our aim is to show that, in the case of the opposite inequality for $p(n)$, all solutions of the equation considered are oscillating for $n\to\infty$.
Anglický abstrakt
Klíčová slova
linear discrete delayed equation, positive sequence, positive solution, opposite inequality, oscillating solution,
Klíčová slova v angličtině
Autoři
Rok RIV
2012
Vydáno
08.08.2011
ISSN
1085-3375
Periodikum
Abstract and Applied Analysis
Svazek
vol. 2011,
Číslo
Article ID 58632
Stát
Spojené státy americké
Strany od
1
Strany do
28
Strany počet
BibTex
@article{BUT73392, author="Jaromír {Baštinec} and Leonid {Berezansky} and Josef {Diblík} and Zdeněk {Šmarda}", title="A final result on the oscillation of solutions of the linear discrete delayed equation \Delta x(n)=-p(n)x(n-k) with a positive coefficient", journal="Abstract and Applied Analysis", year="2011", volume="vol. 2011,", number="Article ID 58632", pages="1--28", issn="1085-3375" }