Detail publikačního výsledku

Solving the Shortest Path Problem on a Graph with Fuzzy Edge Lengths

ŠEDA, M.

Originální název

Solving the Shortest Path Problem on a Graph with Fuzzy Edge Lengths

Anglický název

Solving the Shortest Path Problem on a Graph with Fuzzy Edge Lengths

Druh

Stať ve sborníku v databázi WoS či Scopus

Originální abstrakt

In this paper, we deal with the shortest path problem (SPP) on a graph in which a fuzzy number, instead of a real number, is assigned to each edge. Since fuzzy min operation based on the extension principle leads to nondominated solutions, we propose another approach to solving the SPP using Cheng's centroid point fuzzy ranking method. The described algorithm is a fuzzy generalization of Dijkstra's algorithm for the deterministic case.

Anglický abstrakt

In this paper, we deal with the shortest path problem (SPP) on a graph in which a fuzzy number, instead of a real number, is assigned to each edge. Since fuzzy min operation based on the extension principle leads to nondominated solutions, we propose another approach to solving the SPP using Cheng's centroid point fuzzy ranking method. The described algorithm is a fuzzy generalization of Dijkstra's algorithm for the deterministic case.

Klíčová slova v angličtině

single shortest path problem, fuzzy ranking, binary heap, priority queue

Autoři

ŠEDA, M.

Vydáno

01.09.2001

Nakladatel

Institut für Processtechnik, Processautomatisierung und Messtechnik Zittau/Görlitz

Místo

Zittau

ISBN

3-9808089-0-4

Kniha

Proceedings of the 9th Fuzzy Colloquium

Strany od

247

Strany počet

7

BibTex

@inproceedings{BUT6617,
  author="Miloš {Šeda}",
  title="Solving the Shortest Path Problem on a Graph with Fuzzy Edge Lengths",
  booktitle="Proceedings of the 9th Fuzzy Colloquium",
  year="2001",
  pages="7",
  publisher="Institut für Processtechnik, Processautomatisierung und Messtechnik Zittau/Görlitz",
  address="Zittau",
  isbn="3-9808089-0-4"
}