Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
DIBLÍK, J.; ŠMARDA, Z.; SVOBODA, Z.; KHUSAINOV, D.
Originální název
Instable trivial solution of autonomous differential systems with quadratic right-hand sides in a cone
Anglický název
Druh
Článek recenzovaný mimo WoS a Scopus
Originální abstrakt
The present investigation deals with global instability of a general n-dimensional system of ordinary differential equations with quadratic right-hand sides. The global instability of the zero solution in a given cone is proved by Chetaevs method, assuming that the matrix of linear terms has a simple positive eigenvalue and the remaining eigenvalues have negative real parts. The sufficient conditions for global instability obtained are formulated by inequalities involving norms and eigenvalues of auxiliary matrices. In the proof, a result is used on the positivity of a general third-degree polynomial in two variables to estimate the sign of the full derivative of an appropriate function in a cone.
Anglický abstrakt
Klíčová slova
instability, general n-dimensional system of ordinary differential equations with quadratic right-hand sides, the zero solution, cone, Chetaevs method
Klíčová slova v angličtině
Autoři
Rok RIV
2012
Vydáno
15.03.2011
ISSN
1085-3375
Periodikum
Abstract and Applied Analysis
Svazek
2011
Číslo
Article ID 15491
Stát
Spojené státy americké
Strany od
1
Strany do
23
Strany počet
BibTex
@article{BUT49861, author="Denys {Khusainov} and Josef {Diblík} and Zdeněk {Svoboda} and Zdeněk {Šmarda}", title="Instable trivial solution of autonomous differential systems with quadratic right-hand sides in a cone", journal="Abstract and Applied Analysis", year="2011", volume="2011", number="Article ID 15491", pages="1--23", issn="1085-3375" }