Detail publikačního výsledku

Solutions of singular antiperiodic boundary value problems

PŘIBYL, O.

Originální název

Solutions of singular antiperiodic boundary value problems

Anglický název

Solutions of singular antiperiodic boundary value problems

Druh

Článek recenzovaný mimo WoS a Scopus

Originální abstrakt

Sufficient conditions for the existence of a solution of the equation $$\Big (g(x'(t)) \Big )'=f\Big (t,x(t),x'(t)\Big)$$ with the antiperiodic conditions \mbox{$x(0)+x(T)=0$}, \mbox{$x'(0)+x'(T)=0$} are established. Our nonlinearity $f$ may be singular at its phase variables. The~proofs are based on a~combination of regularity and sequential techniques and use the~topological transversality principle.

Anglický abstrakt

Sufficient conditions for the existence of a solution of the equation $$\Big (g(x'(t)) \Big )'=f\Big (t,x(t),x'(t)\Big)$$ with the antiperiodic conditions \mbox{$x(0)+x(T)=0$}, \mbox{$x'(0)+x'(T)=0$} are established. Our nonlinearity $f$ may be singular at its phase variables. The~proofs are based on a~combination of regularity and sequential techniques and use the~topological transversality principle.

Klíčová slova

singular second-order differential equation, g-Laplacian, antiperiodic boundary conditions, topological transversality principle

Klíčová slova v angličtině

singular second-order differential equation, g-Laplacian, antiperiodic boundary conditions, topological transversality principle

Autoři

PŘIBYL, O.

Vydáno

10.06.2005

ISSN

1586-8850

Periodikum

Miskolc Mathematical Notes

Svazek

6

Číslo

1

Stát

Maďarsko

Strany od

47

Strany do

64

Strany počet

18

BibTex

@article{BUT46132,
  author="Oto {Přibyl}",
  title="Solutions of singular antiperiodic boundary value problems",
  journal="Miskolc Mathematical Notes",
  year="2005",
  volume="6",
  number="1",
  pages="47--64",
  issn="1586-8850"
}