Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
FRANCŮ, J.
Originální název
Homogenization of heat equation with hysteresis
Anglický název
Druh
Článek recenzovaný mimo WoS a Scopus
Originální abstrakt
The contribution delas with heat equaition in the form (c u+W[u])_t=div(a.grad u)=f, where the functional operator W[u] is Prandtl-Ishlinskii hysteresis operator of play type characterized by a distribution function eta. The spatially dependent initial boundary value problem is studied. Proof of existence and uniqueness of the solution is omitted since the proof is a slightly modified proof by Brokate-Sprekels. The homogenization problem for this equation si studied. For eps->0, a sequence of problems of the above type with spatially eps-periodic coefficients c^eps, eta,^eps, a^eps si considered. The coefficients c^star,eta^star and a^star in the homogenized problem are identified and convergence of the corresponding solutions u^eps to u^star is proved.
Anglický abstrakt
Klíčová slova v angličtině
Prandtl-Ishlinskii operaor, Homogenization, Heat equation
Autoři
Vydáno
01.01.2003
ISSN
0378-4754
Periodikum
MATHEMATICS AND COMPUTERS IN SIMULATION
Svazek
61
Číslo
3-5
Stát
Nizozemsko
Strany od
591
Strany počet
7
BibTex
@article{BUT42039, author="Jan {Franců}", title="Homogenization of heat equation with hysteresis", journal="MATHEMATICS AND COMPUTERS IN SIMULATION", year="2003", volume="61", number="3-5", pages="7", issn="0378-4754" }