Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
BARTÍK, V.; ZENDULKA, J.
Originální název
Mining Association Rules from Relational Data - Average Distance Based Method
Anglický název
Druh
Článek recenzovaný mimo WoS a Scopus
Originální abstrakt
The paper describes a new method for association rule discovery in relational databases, which contain both quantitative and categorical attributes. Most of the methods developed in the past are based on initial equi-depth discretization of quantitative attributes. These approaches bring the loss of information. Distance-based methods are another kind of methods. They try to respect the semantics of data. The basic idea of the new method is to separate processing of categorical and quantitative attributes. The first step finds frequent itemsets containing only values of categorical attributes and then quantitative attributes are processed one by one. Discretization of values during quantitative attributes processing is distance-based. A new measure called average distance is introduced for these purposes. The paper describes the method and results of several experiments on real world data.
Anglický abstrakt
Klíčová slova
association rule, frequent itemset, categorical attribute, quantitative attribute
Klíčová slova v angličtině
Autoři
Rok RIV
2011
Vydáno
01.11.2003
ISSN
0302-9743
Periodikum
Lecture Notes in Computer Science
Svazek
2003
Číslo
2888
Stát
Spolková republika Německo
Strany od
757
Strany do
766
Strany počet
10
BibTex
@article{BUT41989, author="Vladimír {Bartík} and Jaroslav {Zendulka}", title="Mining Association Rules from Relational Data - Average Distance Based Method", journal="Lecture Notes in Computer Science", year="2003", volume="2003", number="2888", pages="757--766", issn="0302-9743" }