Detail publikačního výsledku

Positive solutions of the equation x'=-c(t)x(t-r) in the critical case.

DIBLÍK, J.

Originální název

Positive solutions of the equation x'=-c(t)x(t-r) in the critical case.

Anglický název

Positive solutions of the equation x'=-c(t)x(t-r) in the critical case.

Druh

Článek recenzovaný mimo WoS a Scopus

Originální abstrakt

It is considered the asymptotic behaviour of the solutions to the equation $$\dot x(t)= -c(t)x(t-\tau),\quad c(t)> 0,$$ in the nonoscillatory case. There are obtained two-sided (from below and from above) sharp estimates for the pair of subdominant and dominant solutions to the equation.

Anglický abstrakt

It is considered the asymptotic behaviour of the solutions to the equation $$\dot x(t)= -c(t)x(t-\tau),\quad c(t)> 0,$$ in the nonoscillatory case. There are obtained two-sided (from below and from above) sharp estimates for the pair of subdominant and dominant solutions to the equation.

Klíčová slova

Positive solution, critical case.

Klíčová slova v angličtině

Positive solution, critical case.

Autoři

DIBLÍK, J.

Rok RIV

2013

Vydáno

16.03.2000

ISSN

0022-247X

Periodikum

JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS

Svazek

2000

Číslo

250

Stát

Spojené státy americké

Strany od

635

Strany do

659

Strany počet

25

BibTex

@article{BUT39312,
  author="Josef {Diblík}",
  title="Positive solutions of the equation x'=-c(t)x(t-r) in the critical case.",
  journal="JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS",
  year="2000",
  volume="2000",
  number="250",
  pages="635--659",
  issn="0022-247X"
}