Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
KOVÁR, M.
Originální název
Sequence of dualizations of topological spaces is finite.
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
Problem 540 of J. D. Lawson and M. Mislove in Open Problems in Topology asks whether the process of taking duals terminate after finitely many steps with topologies that are duals of each other. The problem was for $T_1$ spaces already solved by G. E. Strecker in 1966. For certain topologies on hyperspaces (which are not necessarily $T_1$), the main question was in the positive answered by Bruce S. Burdick and his solution was presented on The First Turkish International Conference on Topology in Istanbul in 2000. In this paper we bring a complete and positive solution of the problem for all topological spaces. We show that for any topological space $(X,\tau)$ it follows $\tau^{dd}=\tau^{dddd}$. Further, we classify topological spaces with respect to the number of generated topologies by the process of taking duals.
Anglický abstrakt
Klíčová slova
saturated set, dual topology, compactness operator
Klíčová slova v angličtině
Autoři
Rok RIV
2011
Vydáno
01.01.2002
ISBN
0-9730867-0-X
Kniha
Proceedings of the Ninth Prague Topological Symposium
Svazek
9
Číslo
1
Strany od
181
Strany počet
8
BibTex
@inproceedings{BUT36655, author="Martin {Kovár}", title="Sequence of dualizations of topological spaces is finite.", booktitle="Proceedings of the Ninth Prague Topological Symposium", year="2002", volume="9", number="1", pages="8", isbn="0-9730867-0-X" }