Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
POKORNÝ, M.; ŽELASKO, P.; ROUPEC, J.
Originální název
Fuzzy Clustering Technology in Fuzzy Model Identification
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
This paper introduces a soft-computing oriented approach to Takgi-Sugeno fuzzy modelling using the evolutionary principles. Genetic algorithm are applied to optimize fuzzy input variables space through genetic fuzzy clustering procedure and to identify the fuzzy model. Some advanced procedures e.g. individuals lifetime limitation and redundant genes application are used. The presented algorithm allows also the determination of the relevant inpus variables of fuzzy model from theirs potential candidates.To clarify the advantages of the proposed approaches the numerical example of modelling of fuzzy non-linear system is also introduced.
Anglický abstrakt
Klíčová slova
Takagi-Sugeno fuzzy model;input variables selection;fuzzy clustering;advanced genetic algorithm;numerical example
Klíčová slova v angličtině
Autoři
Rok RIV
2011
Vydáno
31.08.2004
Místo
Japonsko
Kniha
Proceedings of 7th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty
Strany od
168
Strany počet
6
BibTex
@inproceedings{BUT22575, author="Miroslav {Pokorný} and Petr {Želasko} and Jan {Roupec}", title="Fuzzy Clustering Technology in Fuzzy Model Identification", booktitle="Proceedings of 7th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty", year="2004", pages="6", address="Japonsko" }