Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
DIBLÍK, J.; HARTMANOVÁ, M.
Originální název
Solutions of Delayed Linear Discrete Two-Dimensional Systems With Constant Coefficients in the Case of Single Zero Eigenvalue of the Matrix of Nondelayed Terms
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
Linear discrete two-dimensional systems of the form y(n + 1) = Cy(n) + Dy(n-ℓ), n≥0, where n is an independent variable and y: {-ℓ, -ℓ + 1,...}→ℝ2 is an unknown function, are considered provided that e is a positive fixed integer and the coefficients of the 2 by 2 constant matrices C and D satisfy conditions known for the so-called weakly delayed discrete systems. General solutions of such systems are constructed assuming that the matrix C has two real eigenvalues, with exactly one of them equaling zero. A problem is discussed on the minimal number of initial values necessary to define a solution and the number of independent arbitrary constants in the general solution.
Anglický abstrakt
Klíčová slova
Discrete system, Delay, Zero Eigenvalue, Constant coefficients.
Klíčová slova v angličtině
Autoři
Vydáno
11.09.2025
Nakladatel
American Institute of Physics
Místo
USA
ISBN
9780735452459
Kniha
AIP Conf. Proc. 3315, 260002 (2025)
Periodikum
AIP conference proceedings
Stát
Spojené státy americké
Strany od
260005-1
Strany do
260005-4
Strany počet
4
URL
https://pubs.aip.org/aip/acp/article-abstract/3315/1/260005/3363140/Solutions-of-delayed-linear-discrete-two?redirectedFrom=fulltext