Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
DIBLÍK, J.
Originální název
Representation of solutions to a linear matrix first-order differential equation with delay
Anglický název
Druh
Článek WoS
Originální abstrakt
Linear matrix delayed differential equation (X)over dot(t) = BX(t - tau) + X(t - tau)C + F(t),t is an element of [0,infinity) is dealt with, where tau > 0 is a delay, t is an independent variable, X(t) is an n x n unknown variable matrix, B and C are given n x n constant matrices, and F(t) is a given n x n variable matrix. Under some commutativity conditions, a formula is derived for solving an initial problem X(t) = Psi(t), t is an element of [-tau, 0], where Psi(t) is an n x n variable matrix. Previous results are discussed and open problems for further investigations suggested.
Anglický abstrakt
Klíčová slova
Differential matrix equation; matrix solution; delayexplicit formula; representation of solutions
Klíčová slova v angličtině
Autoři
Vydáno
21.08.2025
Periodikum
Bulletin of Mathematical Sciences
Svazek
1
Číslo
Stát
Království Saúdská Arábie
Strany od
Strany do
13
Strany počet
URL
https://www.worldscientific.com/doi/10.1142/S1664360725500171
BibTex
@article{BUT199054, author="Josef {Diblík}", title="Representation of solutions to a linear matrix first-order differential equation with delay", journal="Bulletin of Mathematical Sciences", year="2025", volume="1", number="1", pages="1--13", doi="10.1142/S1664360725500171", issn="1664-3607", url="https://www.worldscientific.com/doi/10.1142/S1664360725500171" }