Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
ANDRIUSHCHENKO, R.; ČEŠKA, M.; CHAKRABORTY, D.; JUNGES, S.; KRETINSKY, J.; MACÁK, F.
Originální název
Symbiotic Local Search for Small Decision Tree Policies in MDPs
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
We study decision making policies in Markov decision processes (MDPs). Two key performance indicators of such policies are their value and their interpretability. On the one hand, policies that optimize value can be efficiently computed via a plethora of standard methods. However, the representation of these policies may prevent their interpretability. On the other hand, policies with good interpretability, such as policies represented by a small decision tree, are computationally hard to obtain. This paper contributes a local search approach to find policies with good value, represented by small decision trees. Our local search symbiotically combines learning decision trees from value-optimal policies with symbolic approaches that optimize the size of the decision tree within a constrained neighborhood. Our empirical evaluation shows that this combination provides drastically smaller decision trees for MDPs that are significantly larger than what can be handled by optimal decision tree learners.
Anglický abstrakt
Klíčová slova
Markov Decision Processes; Decision trees; Local search
Klíčová slova v angličtině
Autoři
Vydáno
21.08.2025
Nakladatel
ML Research Press
Kniha
Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence
Periodikum
Proceedings of Machine Learning Research
Stát
Spojené státy americké
Strany od
132
Strany do
142
Strany počet
10
URL
https://proceedings.mlr.press/v286/andriushchenko25a.html
BibTex
@inproceedings{BUT198907, author="Roman {Andriushchenko} and Milan {Češka} and {} and {} and {} and Filip {Macák}", title="Symbiotic Local Search for Small Decision Tree Policies in MDPs", booktitle="Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence", year="2025", journal="Proceedings of Machine Learning Research", pages="132--142", publisher="ML Research Press", url="https://proceedings.mlr.press/v286/andriushchenko25a.html" }