Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
PHAN, V.; JEŘÁBEK, J.
Originální název
Evasive IPv6 Covert Channels: Design, Machine Learning Detection, and Explainable AI Evaluation
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
Adopting a dual approach, this paper presents a framework that integrates two complementary components: CovertGen6, a novel tool for generating realistic IPv6 covert channel attack packets, and a framework of detection system based on multiple machine learning models. CovertGen6 outperforms existing tools by producing diverse, evasive attack scenarios that are captured by Wireshark and converted into CSV datasets for analysis. These authentic datasets are then used to train and evaluate machine learning models for detecting IPv6 covert channels, with the Random Forest classifier achieving a binary classification AuC of 0.985 and a multi-label classification F1-score of 90.3\%. Additionally, the explainable AI technique is incorporated to transparently interpret model decisions and pinpoint the specific header fields used for covert injections. This dual approach bridges the gap between theoretical research and practical network security, laying a robust foundation for intrusion detection systems in IPv6 networks.
Anglický abstrakt
Klíčová slova
IPv6; Covert Channel; Dataset; Machine Learning; Intrusion Detection; Explainable AI
Klíčová slova v angličtině
Autoři
Vydáno
11.06.2025
Nakladatel
SciTePress
Místo
Bilbao, Spain
ISBN
978-989-758-760-3
Kniha
Proceedings of the International Conference on Security and Cryptography
Edice
1
Strany od
666
Strany do
675
Strany počet
10
URL
https://www.scitepress.org/Papers/2025/135561/135561.pdf
BibTex
@inproceedings{BUT198552, author="Viet Anh {Phan} and Jan {Jeřábek}", title="Evasive IPv6 Covert Channels: Design, Machine Learning Detection, and Explainable AI Evaluation", booktitle="Proceedings of the International Conference on Security and Cryptography", year="2025", series="1", pages="666--675", publisher="SciTePress", address="Bilbao, Spain", doi="10.5220/0013556100003979", isbn="978-989-758-760-3", url="https://www.scitepress.org/Papers/2025/135561/135561.pdf" }