Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
REPKA, M.; GRATZER, A.; FOJTÁŠEK, J.; STRAKA, T.; PORTEŠ, P.; SCHIRRER, A.
Originální název
Combining Model-based and Data-driven Observer Designs for Sideslip Angle Estimation
Anglický název
Druh
Článek WoS
Originální abstrakt
The vehicle side slip angle represents a key indicator of dynamic stability. Elevated values of the side slip angle may indicate a loss of stability or undesired vehicle behaviors such as understeering or oversteering. With the increased use of advanced driver assistance systems (ADAS), the need for accurate estimation of the side slip angle has become increasingly critical. This quantity in general needs to be indirectly measured or estimated, with the latter often representing a more cost-effective and more reliable approach. This is usually done by simple observer design, e.g., Kalman filter, which requires a well-parameterized system dynamics model. In this work we explore Machine Learning techniques in combination with a budget hardware inertial measurement unit to estimate the sideslip angle. This is done independently of the actual vehicle configuration, i.e., vehicle load and tires used. We model the system dynamics with a traditional Luenberger Observer, Long-short-term memory, Gated recurrent unit neural networks, and their combination, and investigate possible performance benefits when incorporating well-known physical relations. The results demonstrate that a well-designed combination of model-based and data-driven approaches can achieve high estimation accuracy even without the need for large datasets, which are typically required when employing purely data-driven methods. The performance of the proposed sideslip angle estimator under different driving conditions and tire configurations is validated with real-world measurement data.
Anglický abstrakt
Klíčová slova
sideslip angle estimation, observer design, recurrent neural network, artificial neural network, physics-informed neural network, physics-infused neural network, hybrid observer design
Klíčová slova v angličtině
Autoři
Vydáno
04.08.2025
Periodikum
IEEE Access
Svazek
13
Číslo
4.8.
Stát
Spojené státy americké
Strany od
151838
Strany do
151849
Strany počet
12
URL
https://ieeexplore.ieee.org/document/11107409
BibTex
@article{BUT198479, author="Martin {Repka} and Alexander, Lukas {Gratzer} and Jan {Fojtášek} and Tomáš {Straka} and Petr {Porteš} and Alexander {Schirrer}", title="Combining Model-based and Data-driven Observer Designs for Sideslip Angle Estimation", journal="IEEE Access", year="2025", volume="13", number="4.8.", pages="151838--151849", doi="10.1109/ACCESS.2025.3595282", issn="2169-3536", url="https://ieeexplore.ieee.org/document/11107409" }
Dokumenty
Combining_Model-Based_and_Data-Driven_Observer_Designs_for_Sideslip_Angle_Estimation