Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
DEREVIANKO, A.; DIBLÍK, J.
Originální název
Planar linear differential weakly delayed systems with constant matrices and equivalent ordinary differential systems
Anglický název
Druh
Článek WoS
Originální abstrakt
Considered is a linear planar delayed differential system x(center dot)(t) = Ax(t) + Bx(t-tau), where t >= 0, tau > 0 is a constant delay and A, Bare 2 x 2 constant matrices. Assuming that the system is weakly delayed, its general solution is constructed utilizing the Laplace transform. All the cases are specified of the solutions merging. Moreover, ordinary differential systems are considered such that general solutions of both delayed and non-delayed systems coincide when a transient interval is passed. Initial data for the relevant non-delayed systems are used such that these define the same solution as the corresponding initial data to the delayed system. An analysis of previous findings is given with two illustrative examples considered. Some open problems are suggested as well.
Anglický abstrakt
Klíčová slova
Linear delayed system; Planar system; Weak delay; Single delay; Equivalent non-delayed system; Constant coefficients
Klíčová slova v angličtině
Autoři
Vydáno
01.12.2025
Periodikum
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
Svazek
552
Číslo
1
Stát
Spojené státy americké
Strany od
Strany do
29
Strany počet
URL
https://www.sciencedirect.com/science/article/pii/S0022247X25005219?via%3Dihub
BibTex
@article{BUT198231, author="Anna {Derevianko} and Josef {Diblík}", title="Planar linear differential weakly delayed systems with constant matrices and equivalent ordinary differential systems", journal="JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS", year="2025", volume="552", number="1", pages="1--29", doi="10.1016/j.jmaa.2025.129740", issn="0022-247X", url="https://www.sciencedirect.com/science/article/pii/S0022247X25005219?via%3Dihub" }