Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
GURGUROV, D.; VYKOPAL, I.; GENABITH, J.; OSTERMANN, S.
Originální název
Small Models, Big Impact: Efficient Corpus and Graph-Based Adaptation of Small Multilingual Language Models for Low-Resource Languages
Anglický název
Druh
Stať ve sborníku mimo WoS a Scopus
Originální abstrakt
Low-resource languages (LRLs) face significant challenges in natural language processing (NLP) due to limited data. While current state-of-the-art large language models (LLMs) still struggle with LRLs, smaller multilingual models (mLMs) such as mBERT and XLM-R offer greater promise due to a better fit of their capacity to low training data sizes. This study systematically investigates parameter-efficient adapter-based methods for adapting mLMs to LRLs, evaluating three architectures: Sequential Bottleneck, Invertible Bottleneck, and Low-Rank Adaptation. Using unstructured text from GlotCC and structured knowledge from ConceptNet, we show that small adaptation datasets (e.g., up to 1 GB of free-text or a few MB of knowledge graph data) yield gains in intrinsic (masked language modeling) and extrinsic tasks (topic classification, sentiment analysis, and named entity recognition). We find that Sequential Bottleneck adapters excel in language modeling, while Invertible Bottleneck adapters slightly outperform other methods on downstream tasks due to better embedding alignment and larger parameter counts. Adapter-based methods match or outperform full fine-tuning while using far fewer parameters, and smaller mLMs prove more effective for LRLs than massive LLMs like LLaMA-3, GPT-4, and DeepSeek-R1-based distilled models. While adaptation improves performance, pre-training data size remains the dominant factor, especially for languages with extensive pre-training coverage.
Anglický abstrakt
Klíčová slova
multilingualism; multilingual evaluation; dialects and language varieties; less-resourced languages; endangered languages; minoritized languages
Klíčová slova v angličtině
Autoři
Vydáno
27.07.2025
Nakladatel
Association for Computational Linguistics
Místo
Vienna
ISBN
979-8-89176-254-1
URL
https://aclanthology.org/2025.acl-srw.24/
BibTex
@inproceedings{BUT198201, author="{} and Ivan {Vykopal} and {} and {}", title="Small Models, Big Impact: Efficient Corpus and Graph-Based Adaptation of Small Multilingual Language Models for Low-Resource Languages", year="2025", publisher="Association for Computational Linguistics", address="Vienna", doi="10.18653/v1/2025.acl-srw.24", isbn="979-8-89176-254-1", url="https://aclanthology.org/2025.acl-srw.24/" }