Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
HAN, J.; LANDINI, F.; ROHDIN, J.; SILNOVA, A.; DIEZ SÁNCHEZ, M.; BURGET, L.
Originální název
Leveraging Self-Supervised Learning for Speaker Diarization
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
End-to-end neural diarization has evolved considerably over the past few years, but data scarcity is still a major obstacle for further improvements. Self-supervised learning methods such as WavLM have shown promising performance on several downstream tasks, but their application on speaker diarization is somehow limited. In this work, we explore using WavLM to alleviate the problem of data scarcity for neural diarization training. We use the same pipeline as Pyannote and improve the local end-to-end neural diarization with WavLM and Conformer. Experiments on far-field AMI, AISHELL-4, and AliMeeting datasets show that our method substantially outperforms the Pyannote baseline and achieves new state-of-the-art results on AMI and AISHELL- 4, respectively. In addition, by analyzing the system performance under different data quantity scenarios, we show that WavLM representations are much more robust against data scarcity than filterbank features, enabling less data hungry training strategies. Furthermore, we found that simulated data, usually used to train end-to-end diarization models, does not help when using WavLM in our experiments. Additionally, we also evaluate our model on the recent CHiME8 NOTSOFAR-1 task where it achieves better performance than the Pyannote baseline. Our source code is publicly available at https://github.com/BUTSpeechFIT/DiariZen.
Anglický abstrakt
Klíčová slova
Speaker diarization, data scarcity, WavLM, Pyannote, far-field meeting data
Klíčová slova v angličtině
Autoři
Vydáno
06.04.2025
Nakladatel
IEEE Signal Processing Society
Místo
Hyderabad
ISBN
979-8-3503-6874-1
Kniha
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Strany od
1
Strany do
5
Strany počet
URL
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10889475
BibTex
@inproceedings{BUT198048, author="Jiangyu {Han} and Federico Nicolás {Landini} and Johan Andréas {Rohdin} and Anna {Silnova} and Mireia {Diez Sánchez} and Lukáš {Burget}", title="Leveraging Self-Supervised Learning for Speaker Diarization", booktitle="ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings", year="2025", pages="1--5", publisher="IEEE Signal Processing Society", address="Hyderabad", doi="10.1109/ICASSP49660.2025.10889475", isbn="979-8-3503-6874-1", url="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10889475" }
Dokumenty
Leveraging_Self-Supervised_Learning_for_Speaker_Diarization