Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
SCHWARZEROVÁ, J.; OLEŠOVÁ, D.; ŠABATOVÁ, K.; KVASNIČKA, A.; KOŠTOVAL, A.; FRIEDECKÝ, D.; SEKORA, J.; DLUHÁ, J.; PROVAZNÍK, V.; POPELINSKY, L.; WECKWERTH, W.
Originální název
Enhanced metabolomic predictions using concept drift analysis: identification and correction of confounding factors
Anglický název
Druh
Článek WoS
Originální abstrakt
Motivation The increasing use of big data and optimized prediction methods in metabolomics requires techniques aligned with biological assumptions to improve early symptom diagnosis. One major challenge in predictive data analysis is handling confounding factors—variables influencing predictions but not directly included in the analysis. Results Detecting and correcting confounding factors enhances prediction accuracy, reducing false negatives that contribute to diagnostic errors. This study reviews concept drift detection methods in metabolomic predictions and selects the most appropriate ones. We introduce a new implementation of concept drift analysis in predictive classifiers using metabolomics data. Known confounding factors were confirmed, validating our approach and aligning it with conventional methods. Additionally, we identified potential confounding factors that may influence biomarker analysis, which could introduce bias and impact model performance. Availability and implementation Based on biological assumptions supported by detected concept drift, these confounding factors were incorporated into correction of prediction algorithms to enhance their accuracy. The proposed methodology has been implemented in Semi-Automated Pipeline using Concept Drift Analysis for improving Metabolomic Predictions (SAPCDAMP), an open-source workflow available at https://github.com/JanaSchwarzerova/SAPCDAMP.
Anglický abstrakt
Klíčová slova
Metabolomics, Concept drift analysis, Confounding factors, Predictive modeling, Enhanced classi-fiers
Klíčová slova v angličtině
Autoři
Vydáno
04.04.2025
Nakladatel
Oxford Academic
Místo
Oxford
ISSN
2635-0041
Svazek
5
Číslo
1
Strany od
Strany do
12
Strany počet
URL
https://academic.oup.com/bioinformaticsadvances/article/5/1/vbaf073/8106474
Plný text v Digitální knihovně
http://hdl.handle.net/11012/251062
BibTex
@article{BUT197854, author="Jana {Schwarzerová} and Dominika {Olešová} and Kateřina {Šabatová} and Aleš {Kvasnička} and Aleš {Koštoval} and David {Friedecký} and Jiří {Sekora} and Jitka {Dluhá} and Valentýna {Provazník} and Lubos {Popelinsky} and Wolfram {Weckwerth}", title="Enhanced metabolomic predictions using concept drift analysis: identification and correction of confounding factors ", year="2025", volume="5", number="1", pages="1--12", doi="10.1093/bioadv/vbaf073", url="https://academic.oup.com/bioinformaticsadvances/article/5/1/vbaf073/8106474" }
Dokumenty
vbaf073