Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
PLEVAČ, L.; VAŠÍČEK, Z.
Originální název
Towards Efficient Semantic Mutation in CGP: Enhancing SOMOk
Anglický název
Druh
Stať ve sborníku mimo WoS a Scopus
Originální abstrakt
Genetic Programming (GP) and its variants have proven to be promising techniques for solving problems across various domains. However, GP does not scale well, particularly when applied to symbolic regression in the Boolean domain. To address this limitation, a semantically oriented mutation operator (SOMO) has been proposed and integrated with Cartesian Genetic Programming (CGP). Nevertheless, like standard GP, even SOMO suffers in some cases from bloat - an excessive growth in solution size without a corresponding performance gain. This work introduces SOMOk-TS, an extension of SOMO that incorporates the so-called Tumor Search strategy to identify and preserve reusable substructures. By managing diversity through an immune-inspired mechanism, SOMOk-TS promotes the reuse of substructures, thereby reducing computational overhead. It achieves significantly lower execution times while maintaining or improving solution compactness, highlighting its potential for scalable and efficient evolutionary design.
Anglický abstrakt
Klíčová slova
Genetic Programming, Boolean function learning
Klíčová slova v angličtině
Autoři
Vydáno
14.07.2025
Nakladatel
Association for Computing Machinery
Místo
Malaga
ISBN
979-8-4007-1464-1
Kniha
Proceedings of the Genetic and Evolutionary Computation Conference Companion
Strany od
2172
Strany do
2176
Strany počet
5
BibTex
@inproceedings{BUT197538, author="Lukáš {Plevač} and Zdeněk {Vašíček}", title="Towards Efficient Semantic Mutation in CGP: Enhancing SOMOk", booktitle="Proceedings of the Genetic and Evolutionary Computation Conference Companion", year="2025", pages="2172--2176", publisher="Association for Computing Machinery", address="Malaga", doi="10.1145/3712255.3734289", isbn="979-8-4007-1464-1" }