Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
BUCHTA, L.; KOZOVSKÝ, M.; BLAHA, P.
Originální název
A Dead-Time Compensation Strategy Based on an Online Learned Artificial Neural Network
Anglický název
Druh
Článek WoS
Originální abstrakt
This article presents an innovative approach to mitigate the harmonic distortion of the phase currents of a permanent magnet synchronous motor (PMSM) controlled by a field-oriented control (FOC) algorithm. The issue of phase current harmonic distortion is often a consequence of the output voltage deformation caused by the non-linearities of the voltage source inverter (VSI). The relationship between the disturbance voltages of the inverter and the phase currents of the motor is non-linear. Therefore, we used an artificial neural network (ANN) to identify the compensation voltages. The topology is designed to allow the neural network to solve complex problems with the limited computing resources available on the AURIX TC397 microcontroller. The input vector is assembled from quantities available in the PMSM FOC algorithm. The online learning process based on the back-propagation algorithm is adapted to operate directly on the microcontroller. The proposed strategy with ANN is verified on a real PMSM. The results show the excellent ability of the proposed ANN to suppress the harmonic distortion of the PMSM phase currents without knowledge of the VSI parameters.
Anglický abstrakt
Klíčová slova
Inverter non-linearities compensation, dead-time effect, artificial neural network (ANN), permanent magnet synchronous motor (PMSM), voltage source inverter (VSI)
Klíčová slova v angličtině
Autoři
Vydáno
03.04.2025
Periodikum
IEEE Transactions on Industrial Electronics
Svazek
72
Číslo
10
Stát
Spojené státy americké
Strany od
10574
Strany do
10584
Strany počet
11
URL
https://ieeexplore.ieee.org/document/10948334
Plný text v Digitální knihovně
http://hdl.handle.net/11012/255539
BibTex
@article{BUT197508, author="Luděk {Buchta} and Matúš {Kozovský} and Petr {Blaha}", title="A Dead-Time Compensation Strategy Based on an Online Learned Artificial Neural Network", journal="IEEE Transactions on Industrial Electronics", year="2025", volume="72", number="10", pages="10574--10584", doi="10.1109/TIE.2025.3544207", issn="0278-0046", url="https://ieeexplore.ieee.org/document/10948334" }
Dokumenty
A_Dead-Time_Compensation_Strategy_Based_on_an_Online_Learned_Artificial_Neural_Network