Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
NOHEL, M.; ULRICH, C.; SUPRIJADI, J.; WALD, T.; MAIER-HEIN, K.
Originální název
Unified Framework for Foreground and Anonymization Area Segmentation in CT and MRI Data
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
This study presents an open-source toolkit to address critical challenges in preprocessing data for self-supervised learning (SSL) for 3D medical imaging, focusing on data privacy and computational efficiency. The toolkit comprises two main components: a segmentation network that delineates foreground regions to optimize data sampling and thus reduce training time, and a segmentation network that identifies anonymized regions, preventing erroneous supervision in reconstruction-based SSL methods. Experimental results demonstrate high robustness, with mean Dice scores exceeding 98.5 across all anonymization methods and surpassing 99.5 for foreground segmentation tasks, highlighting the toolkit’s efficacy in supporting SSL applications in 3D medical imaging for both CT and MRI images. The weights and code is available at https://github.com/MIC-DKFZ/Foreground-and-Anonymization-Area-Segmentation.
Anglický abstrakt
Klíčová slova
segmentation
Klíčová slova v angličtině
Autoři
Vydáno
02.03.2025
Nakladatel
Springer Vieweg
Místo
Wiesbaden
ISBN
978-3-658-47421-8
Kniha
Bildverarbeitung für die Medizin 2025
Periodikum
Informatik aktuell
Stát
Spolková republika Německo
Strany od
242
Strany do
247
Strany počet
6
URL
https://link.springer.com/chapter/10.1007/978-3-658-47422-5_53
BibTex
@inproceedings{BUT197344, author="Michal {Nohel} and Constantin {Ulrich} and Jonathan {Suprijadi} and Tassilo {Wald} and Klaus {Maier-Hein}", title="Unified Framework for Foreground and Anonymization Area Segmentation in CT and MRI Data", booktitle="Bildverarbeitung für die Medizin 2025", year="2025", journal="Informatik aktuell", pages="242--247", publisher="Springer Vieweg", address="Wiesbaden", doi="10.1007/978-3-658-47422-5\{_}53", isbn="978-3-658-47421-8", issn="1431-472X", url="https://link.springer.com/chapter/10.1007/978-3-658-47422-5_53" }