Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
Jiang, WX (Jiang, Weixin); Wang, JF (Wang, Junfang) ; Varbanov, PS (Varbanov, Petar Sabev); Yuan, Q (Yuan, Qing); Chen, YJ (Chen, Yujie) ; Wang, BH (Wang, Bohong) ; Yu, B (Yu, Bo)
Originální název
Hybrid data-mechanism-driven model of the unsteady soil temperature field for long-buried crude oil pipelines with non-isothermal batch transportation
Anglický název
Druh
Článek WoS
Originální abstrakt
The thermal simulation of oil pipeline transportation is crucial for ensuring safe transportation of pipelines and optimizing energy consumption. The prediction of the soil temperature field is the key to the thermal calculation for the non-isothermal batch transportation of the buried pipeline, while the standard numerical simulation of the soil temperature field is time-consuming. Coupling with a data-driven Bayesian neural network and mechanism-informed partial differential equation, an efficient and robust prediction model of soil temperature field is proposed to dynamically adapt the spatio-temporal changes of boundary conditions. Based on the soil temperature field predicted by the proposed model, the oil temperature at the outlet of the pipeline is further obtained, which is compared with that from the field data and the standard numerical simulation. It is found that the former is in good agreement with the latter two, verifying the proposed model. However, the calculation of the proposed model only takes 10.59 s, which is 29.53 times faster than the standard numerical simulation. Moreover, the predicted error of the proposed model only changes by 0.12 % (from 3.05 % to 3.17 %) when the training data decreases from 100 % to 2.2 %, which is lower than that of two data-driven surrogate models.
Anglický abstrakt
Klíčová slova
Crude oil pipeline; Soil temperature field; Hybrid data-mechanism-driven model; Data insensitivity; Fast prediction; Numerical simulation
Klíčová slova v angličtině
Autoři
Rok RIV
2025
Vydáno
01.04.2024
Nakladatel
PERGAMON-ELSEVIER SCIENCE LTD
Místo
OXFORD
ISSN
0360-5442
Periodikum
Energy
Svazek
292
Číslo
130354
Stát
Spojené království Velké Británie a Severního Irska
Strany od
Strany do
Strany počet
14
URL
https://www.sciencedirect.com/science/article/pii/S0360544224001257#:~:text=Coupling%20with%20a%20data-driven%20Bayesian%20neural%20network%20and,of%20soil%20temperature%20field%20is%20proposed%20to%20dynamical
BibTex
@article{BUT196910, author="Jiang, WX (Jiang, Weixin) and Wang, JF (Wang, Junfang) and Varbanov, PS (Varbanov, Petar Sabev) and Yuan, Q (Yuan, Qing) and Chen, YJ (Chen, Yujie) and Wang, BH (Wang, Bohong) and Yu, B (Yu, Bo)", title="Hybrid data-mechanism-driven model of the unsteady soil temperature field for long-buried crude oil pipelines with non-isothermal batch transportation", journal="Energy", year="2024", volume="292", number="130354", pages="130354--130354", doi="10.1016/j.energy.2024.130354", issn="0360-5442", url="https://www.sciencedirect.com/science/article/pii/S0360544224001257#:~:text=Coupling%20with%20a%20data-driven%20Bayesian%20neural%20network%20and,of%20soil%20temperature%20field%20is%20proposed%20to%20dynamical" }