Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
CABANZO, C.; BARON, E.; VOŘECHOVSKÝ, M.; AKIYAMA, M.; LOURENCO, P.; MATOS, J.
Originální název
Exploration of Adaptive Sequential Sampling in the Definition of Surrogate Models for the Rare Event Estimation in Transportation Assets
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
Adaptive sequential sampling provides a good technique to refine and increase the accuracy of surrogate models, used for reliability analysis, based on the selection of possible future candidates in the input domain (i.e., random variables). In the present research, different methodologies for obtaining the training sample for a surrogate model were explored, considering sample size, distribution of the points, and identification of the failure region. The effects on the reliability of the slope stability under vertical loading based on the safety factors from Bishop's simplified method were obtained. The results reinforce the importance of the characteristics of the training sample used for the application of surrogate models to describe limit states and their accuracy when employed for the computation of the reliability index.
Anglický abstrakt
Klíčová slova
Failure surface refinement; Performance of transportation assets; Structure-related parameter uncertainties; Reliability assessment
Klíčová slova v angličtině
Autoři
Rok RIV
2025
Vydáno
01.05.2024
Nakladatel
SPRINGER INTERNATIONAL PUBLISHING AG
Místo
CHAM
ISBN
978-3-031-60271-9
Kniha
20th International Probabilistic Workshop IPW 2024, Lecture Notes in Civil Engineering 494
Svazek
494
Strany od
366
Strany do
376
Strany počet
11
BibTex
@inproceedings{BUT194147, author="Carlos Andres Mendoza {Cabanzo} and Edward {Baron} and Miroslav {Vořechovský} and M. {Akiyama} and Paulo B. {Lourenco} and Jose Campos {Matos}", title="Exploration of Adaptive Sequential Sampling in the Definition of Surrogate Models for the Rare Event Estimation in Transportation Assets", booktitle="20th International Probabilistic Workshop IPW 2024, Lecture Notes in Civil Engineering 494", year="2024", volume="494", pages="366--376", publisher="SPRINGER INTERNATIONAL PUBLISHING AG", address="CHAM", doi="10.1007/978-3-031-60271-9\{_}34", isbn="978-3-031-60271-9" }