Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
MARCHISIO, A.; BUSSOLINO, B.; COLUCCI, A.; MRÁZEK, V.; HANIF, M.; MARTINA, M.; MASERA, G.; SHAFIQUE, M.
Originální název
Hardware and Software Optimizations for Capsule Networks
Anglický název
Druh
Kapitola, resp. kapitoly v odborné knize
Originální abstrakt
Among advanced Deep Neural Network models, Capsule Networks (CapsNets) have shown high learning and generalization capabilities for advanced tasks. Their capability to learn hierarchical information of features makes them appealing in many applications. However, their compute-intensive nature poses several challenges for their deployment on resource-constrained devices. This chapter provides an optimization flow at the software and at the hardware level for improving the energy efficiency of the CapsNets' execution.
Anglický abstrakt
Klíčová slova
capsule networks, hardware, software, neural architecture search
Klíčová slova v angličtině
Autoři
Rok RIV
2025
Vydáno
01.01.2023
Nakladatel
Springer Nature Switzerland AG
Místo
Cham
ISBN
978-3-031-39932-9
Kniha
Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing
Strany od
303
Strany do
328
Strany počet
26
BibTex
@inbook{BUT193587, author="MARCHISIO, A. and BUSSOLINO, B. and COLUCCI, A. and MRÁZEK, V. and HANIF, M. and MARTINA, M. and MASERA, G. and SHAFIQUE, M.", title="Hardware and Software Optimizations for Capsule Networks", booktitle="Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing", year="2023", publisher="Springer Nature Switzerland AG", address="Cham", pages="303--328", doi="10.1007/978-3-031-39932-9\{_}12", isbn="978-3-031-39932-9" }